scholarly journals Drosophila Kelch Is an Oligomeric Ring Canal Actin Organizer

1997 ◽  
Vol 138 (4) ◽  
pp. 799-810 ◽  
Author(s):  
Douglas N. Robinson ◽  
Lynn Cooley

Drosophila kelch has four protein domains, two of which are found in kelch-family proteins and in numerous nonkelch proteins. In Drosophila, kelch is required to maintain ring canal organization during oogenesis. We have performed a structure–function analysis to study the function of Drosophila kelch. The amino-terminal region (NTR) regulates the timing of kelch localization to the ring canals. Without the NTR, the protein localizes precociously and destabilizes the ring canals and the germ cell membranes, leading to dominant sterility. The amino half of the protein including the BTB domain mediates dimerization. Oligomerization through the amino half of kelch might allow cross-linking of ring canal actin filaments, organizing the inner rim cytoskeleton. The kelch repeat domain is necessary and sufficient for ring canal localization and likely mediates an additional interaction, possibly with actin.

2002 ◽  
Vol 156 (4) ◽  
pp. 703-713 ◽  
Author(s):  
Reed J. Kelso ◽  
Andrew M. Hudson ◽  
Lynn Cooley

The Drosophila kelch gene encodes a member of a protein superfamily defined by the presence of kelch repeats. In Drosophila, Kelch is required to maintain actin organization in ovarian ring canals. We set out to study the actin cross-linking activity of Kelch and how Kelch function is regulated. Biochemical studies using purified, recombinant Kelch protein showed that full-length Kelch bundles actin filaments, and kelch repeat 5 contains the actin binding site. Two-dimensional electrophoresis demonstrated that Kelch is tyrosine phosphorylated in a src64-dependent pathway. Site-directed mutagenesis determined that tyrosine residue 627 is phosphorylated. A Kelch mutant with tyrosine 627 changed to alanine (KelY627A) rescued the actin disorganization phenotype of kelch mutant ring canals, but failed to produce wild-type ring canals. Electron microscopy demonstrated that phosphorylation of Kelch is critical for the proper morphogenesis of actin during ring canal growth, and presence of the nonphosphorylatable KelY627A protein phenocopied src64 ring canals. KelY627A protein in ring canals also dramatically reduced the rate of actin monomer exchange. The phenotypes caused by src64 mutants and KelY627A expression suggest that a major function of Src64 signaling in the ring canal is the negative regulation of actin cross-linking by Kelch.


1996 ◽  
Vol 133 (1) ◽  
pp. 61-74 ◽  
Author(s):  
L G Tilney ◽  
M S Tilney ◽  
G M Guild

Growing the intracellular bridges that connect nurse cells with each o ther and to the developing oocyte is vital for egg development. These ring canals increase from 0.5 microns in diameter at stage 2 to 10 microns in diameter at stage 11. Thin sections cut horizontally as you would cut a bagel, show that there is a layer of circumferentially oriented actin filaments attached to the plasma membrane at the periphery of each canal. By decoration with subfragment 1 of myosin we find actin filaments of mixed polarities in the ring such as found in the "contractile ring" formed during cytokinesis. In vertical sections through the canal the actin filaments appear as dense dots. At stage 2 there are 82 actin filaments in the ring, by stage 6 there are 717 and by stage 10 there are 726. Taking into account the diameter, this indicates that there is 170 microns of actin filaments/canal at stage 2 (pi x 0.5 microns x 82), 14,000 microns at stage 9 and approximately 23,000 microns at stage 11 or one inch of actin filament! The density of actin filaments remains unchanged throughout development. What is particularly striking is that by stages 4-5, the ring of actin filaments has achieved its maximum thickness, even though the diameter has not yet increased significantly. Thereafter, the diameter increases. Throughout development, stages 2-11, the canal length also increases. Although the density (number of actin filaments/micron2) through a canal remains constant from stage 5 on, the actin filaments appear as a net of interconnected bundles. Further information on this net of bundles comes from studying mutant animals that lack kelch, a protein located in the ring canal that has homology to the actin binding protein, scruin. In this mutant, the actin filaments form normally but individual bundles that comprise the fibers of the net are not bound tightly together. Some bundles enter into the ring canal lumen but do not completely occlude the lumen. all these observations lay the groundwork for our understanding of how a noncontractile ring increases in thickness, diameter, and length during development.


2020 ◽  
Author(s):  
Julianne A. Gerdes ◽  
Katelynn M. Mannix ◽  
Andrew M. Hudson ◽  
Lynn Cooley

AbstractRing canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC, a component specific to female germline ring canals, is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ring-canal-like ectopic actin structures in somatic follicle cells. Finally, we present findings which indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility, a result which is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.


Genetics ◽  
2020 ◽  
Vol 216 (3) ◽  
pp. 717-734
Author(s):  
Julianne A. Gerdes ◽  
Katelynn M. Mannix ◽  
Andrew M. Hudson ◽  
Lynn Cooley

Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC—a component specific to female germline ring canals—is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility—a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.


2002 ◽  
Vol 156 (4) ◽  
pp. 677-687 ◽  
Author(s):  
Andrew M. Hudson ◽  
Lynn Cooley

The Arp2/3 complex has been shown to dramatically increase the slow spontaneous rate of actin filament nucleation in vitro, and it is known to be important for remodeling the actin cytoskeleton in vivo. We isolated and characterized loss of function mutations in genes encoding two subunits of the Drosophila Arp2/3 complex: Arpc1, which encodes the homologue of the p40 subunit, and Arp3, encoding one of the two actin-related proteins. We used these mutations to study how the Arp2/3 complex contributes to well-characterized actin structures in the ovary and the pupal epithelium. We found that the Arp2/3 complex is required for ring canal expansion during oogenesis but not for the formation of parallel actin bundles in nurse cell cytoplasm and bristle shaft cells. The requirement for Arp2/3 in ring canals indicates that the polymerization of actin filaments at the ring canal plasma membrane is important for driving ring canal growth.


2011 ◽  
Vol 22 (22) ◽  
pp. 4247-4255 ◽  
Author(s):  
Regina B. Troyanovsky ◽  
Jörg Klingelhöfer ◽  
Sergey M. Troyanovsky

Cadherin–catenin interactions play an important role in cadherin-mediated adhesion. Here we present strong evidence that in the cadherin–catenin complex α-catenin contributes to the binding strength of another catenin, p120, to the same complex. Specifically, we found that a β-catenin–uncoupled cadherin mutant interacts much more weakly with p120 than its full-size counterpart and that it is rapidly endocytosed from the surface of A-431 cells. We also showed that p120 overexpression stabilizes this mutant on the cell surface. Examination of the α-catenin–deficient MDA-MB-468 cells and their derivates in which α-catenin was reintroduced showed that α-catenin reinforces E-cadherin–p120 association. Finally, a cross-linking analysis of the cadherin–catenin complex indicated that a large loop located in the middle of the p120 arm-repeat domain is in close spatial vicinity to the amino-terminal VH1 domain of α-catenin. The six amino acid–long extension of this loop, caused by an alternative splicing, weakens p120 binding to cadherin. The data suggest that α-catenin–p120 contact within the cadherin–catenin complex can regulate cadherin trafficking.


1993 ◽  
Vol 120 (5) ◽  
pp. 1169-1176 ◽  
Author(s):  
M Fechheimer ◽  
R Furukawa

Actin cross-linking proteins are important for formation of isotropic F-actin networks and anisotropic bundles of filaments in the cytoplasm of eucaryotic cells. A 34,000-D protein from the cellular slime mold Dictyostelium discoideum mediates formation of actin bundles in vitro, and is specifically incorporated into filopodia. The actin cross-linking activity of this protein is inhibited by the presence of micromolar calcium. A 27,000-D fragment obtained by digestion with alpha-chymotrypsin lacks the amino-terminal six amino acids and the carboxyl-terminal 7,000 D of the intact polypeptide. The 27,000-D fragment retains F-actin binding activity assessed by cosedimentation assays and by 125I-[F-actin] blot overlay technique, F-actin cross-linking activity as assessed by viscometry, and calcium binding activity. Ultrastructural analyses indicate that the 27,000-D fragment is deficient in the bundling activity characteristic of the intact 34,000-D protein. Actin filaments are aggregated into microdomains but not bundle in the presence of the 27,000-D fragment. A polarized light scattering assay was used to demonstrate that the 34,000-D protein increases the orientational correlation among F-actin filaments. The 27,000-D fragment does not increase the orientation of the actin filaments as assessed by this technique. A terminal segment(s) of the 34,000-D protein, lacking in the 27,000-D fragment, contributes significantly to the ability to cross-link actin filaments into bundles.


1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


2009 ◽  
Vol 192 (2) ◽  
pp. 575-586 ◽  
Author(s):  
Seyeun Kim ◽  
Brian M. Swalla ◽  
Jeffrey F. Gardner

ABSTRACT CTnDOT integrase (IntDOT) is a member of the tyrosine family of site-specific DNA recombinases. IntDOT is unusual in that it catalyzes recombination between nonidentical sequences. Previous mutational analyses centered on mutants with substitutions of conserved residues in the catalytic (CAT) domain or residues predicted by homology modeling to be close to DNA in the core-binding (CB) domain. That work suggested that a conserved active-site residue (Arg I) of the CAT domain is missing and that some residues in the CB domain are involved in catalysis. Here we used a genetic approach and constructed an Escherichia coli indicator strain to screen for random mutations in IntDOT that disrupt integrative recombination in vivo. Twenty-five IntDOT mutants were isolated and characterized for DNA binding, DNA cleavage, and DNA ligation activities. We found that mutants with substitutions in the amino-terminal (N) domain were catalytically active but defective in forming nucleoprotein complexes, suggesting that they have altered protein-protein interactions or altered interactions with DNA. Replacement of Ala-352 of the CAT domain disrupted DNA cleavage but not DNA ligation, suggesting that Ala-352 may be important for positioning the catalytic tyrosine (Tyr-381) during cleavage. Interestingly, our biochemical data and homology modeling of the CAT domain suggest that Arg-285 is the missing Arg I residue of IntDOT. The predicted position of Arg-285 shows it entering the active site from a position on the polypeptide backbone that is not utilized in other tyrosine recombinases. IntDOT may therefore employ a novel active-site architecture to catalyze recombination.


1998 ◽  
Vol 4 (S2) ◽  
pp. 32-33
Author(s):  
M. F. Schmid ◽  
P. Matsudaira ◽  
M. T. Dougherty ◽  
M. B. Sherman ◽  
C. Henn ◽  
...  

Collaboration between local microscopists and image processing specialists, and their remote biological colleagues, has been hampered by the difficulty of i) transferring the three-dimensional reconstructions of macromolecules resulting from the cryomicroscopy and image processing, ii) viewing the results in a meaningful way, and iii) communicating the results and the interpretations derived therefrom to each other.The acrosomal process is an intracellular quasi-crystalline organelle in the head of the sperm of the horseshoe crab Limulus polyphemus. It consists of 100 - 130 actin-scruin filaments packed together in a pseudo-hexagonal lattice and is up to 60 μm long with a diameter of 0.1 μm. Scruin-scruin interactions are responsible for cross-linking the actin filaments together in the bundle. Our goal was to reveal interfilament interactions in the bundle. We have taken tilt series images in the electron microscope to reconstruct its three-dimensional structure at 45 Å resolution.


Sign in / Sign up

Export Citation Format

Share Document