scholarly journals α-Catenin contributes to the strength of E-cadherin–p120 interactions

2011 ◽  
Vol 22 (22) ◽  
pp. 4247-4255 ◽  
Author(s):  
Regina B. Troyanovsky ◽  
Jörg Klingelhöfer ◽  
Sergey M. Troyanovsky

Cadherin–catenin interactions play an important role in cadherin-mediated adhesion. Here we present strong evidence that in the cadherin–catenin complex α-catenin contributes to the binding strength of another catenin, p120, to the same complex. Specifically, we found that a β-catenin–uncoupled cadherin mutant interacts much more weakly with p120 than its full-size counterpart and that it is rapidly endocytosed from the surface of A-431 cells. We also showed that p120 overexpression stabilizes this mutant on the cell surface. Examination of the α-catenin–deficient MDA-MB-468 cells and their derivates in which α-catenin was reintroduced showed that α-catenin reinforces E-cadherin–p120 association. Finally, a cross-linking analysis of the cadherin–catenin complex indicated that a large loop located in the middle of the p120 arm-repeat domain is in close spatial vicinity to the amino-terminal VH1 domain of α-catenin. The six amino acid–long extension of this loop, caused by an alternative splicing, weakens p120 binding to cadherin. The data suggest that α-catenin–p120 contact within the cadherin–catenin complex can regulate cadherin trafficking.

1993 ◽  
Vol 69 (04) ◽  
pp. 351-360 ◽  
Author(s):  
Masahiro Murakawa ◽  
Takashi Okamura ◽  
Takumi Kamura ◽  
Tsunefumi Shibuya ◽  
Mine Harada ◽  
...  

SummaryThe partial amino acid sequences of fibrinogen Aα-chains from five mammalian species have been inferred by means of the polymerase chain reaction (PCR). From the genomic DNA of the rhesus monkey, pig, dog, mouse and Syrian hamster, the DNA fragments coding for α-C domains in the Aα-chains were amplified and sequenced. In all species examined, four cysteine residues were always conserved at the homologous positions. The carboxy- and amino-terminal portions of the α-C domains showed a considerable homology among the species. However, the sizes of the middle portions, which corresponded to the internal repeat structures, showed an apparent variability because of several insertions and/or deletions. In the rhesus monkey, pig, mouse and Syrian hamster, 13 amino acid tandem repeats fundamentally similar to those in humans and the rat were identified. In the dog, however, tandem repeats were found to consist of 18 amino acids, suggesting an independent multiplication of the canine repeats. The sites of the α-chain cross-linking acceptor and α2-plasmin inhibitor cross-linking donor were not always evolutionally conserved. The arginyl-glycyl-aspartic acid (RGD) sequence was not found in the amplified region of either the rhesus monkey or the pig. In the canine α-C domain, two RGD sequences were identified at the homologous positions to both rat and human RGD S. In the Syrian hamster, a single RGD sequence was found at the same position to that of the rat. Triplication of the RGD sequences was seen in the murine fibrinogen α-C domain around the homologous site to the rat RGDS sequence. These findings are of some interest from the point of view of structure-function and evolutionary relationships in the mammalian fibrinogen Aα-chains.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e37008 ◽  
Author(s):  
Juanhan Yu ◽  
Yuan Miao ◽  
Hongtao Xu ◽  
Yang Liu ◽  
Guiyang Jiang ◽  
...  

2000 ◽  
Vol 113 (8) ◽  
pp. 1481-1490 ◽  
Author(s):  
D.J. Mariner ◽  
J. Wang ◽  
A.B. Reynolds

ARVCF is a novel Armadillo repeat domain protein that is closely related to the catenin p120(ctn). Using new ARVCF monoclonal antibodies, we have found that ARVCF associates with E-cadherin and competes with p120 for interaction with the E-cadherin juxtamembrane domain. ARVCF also localized to the nucleus in some cell types, however, and was significantly more nucleophilic than p120. Surprisingly, despite apparently ubiquitous expression, ARVCF was at least tenfold less abundant than p120 in a wide variety of cell types, and was difficult to detect by immunofluorescence unless overexpressed. Consequently, it is not likely to be abundant enough in adult tissues to functionally compete with p120. ARVCF also completely lacked the ability to induce the cell-branching phenotype associated with overexpression of p120. Expression of ARVCF/p120 chimeras confirmed previous results indicating that the branching activity of p120 maps to its Armadillo repeat domain. Surprisingly, the preferential localization of ARVCF to the nucleus required sequences in the amino-terminal end of ARVCF, suggesting that the sequences directing nuclear translocation of ARVCF are distinct from the predicted bipartite nuclear localization signal located between repeats 6 and 7. The dual localization of ARVCF to junctions and to nuclei suggests activities in different cellular compartments, as is the case for several other Armadillo repeat proteins including beta-catenin, p120 and the plakophilins.


1997 ◽  
Vol 138 (4) ◽  
pp. 799-810 ◽  
Author(s):  
Douglas N. Robinson ◽  
Lynn Cooley

Drosophila kelch has four protein domains, two of which are found in kelch-family proteins and in numerous nonkelch proteins. In Drosophila, kelch is required to maintain ring canal organization during oogenesis. We have performed a structure–function analysis to study the function of Drosophila kelch. The amino-terminal region (NTR) regulates the timing of kelch localization to the ring canals. Without the NTR, the protein localizes precociously and destabilizes the ring canals and the germ cell membranes, leading to dominant sterility. The amino half of the protein including the BTB domain mediates dimerization. Oligomerization through the amino half of kelch might allow cross-linking of ring canal actin filaments, organizing the inner rim cytoskeleton. The kelch repeat domain is necessary and sufficient for ring canal localization and likely mediates an additional interaction, possibly with actin.


2018 ◽  
Author(s):  
Allan J. R. Ferrari ◽  
Fabio C. Gozzo ◽  
Leandro Martinez

<div><p>Chemical cross-linking/Mass Spectrometry (XLMS) is an experimental method to obtain distance constraints between amino acid residues, which can be applied to structural modeling of tertiary and quaternary biomolecular structures. These constraints provide, in principle, only upper limits to the distance between amino acid residues along the surface of the biomolecule. In practice, attempts to use of XLMS constraints for tertiary protein structure determination have not been widely successful. This indicates the need of specifically designed strategies for the representation of these constraints within modeling algorithms. Here, a force-field designed to represent XLMS-derived constraints is proposed. The potential energy functions are obtained by computing, in the database of known protein structures, the probability of satisfaction of a topological cross-linking distance as a function of the Euclidean distance between amino acid residues. The force-field can be easily incorporated into current modeling methods and software. In this work, the force-field was implemented within the Rosetta ab initio relax protocol. We show a significant improvement in the quality of the models obtained relative to current strategies for constraint representation. This force-field contributes to the long-desired goal of obtaining the tertiary structures of proteins using XLMS data. Force-field parameters and usage instructions are freely available at http://m3g.iqm.unicamp.br/topolink/xlff <br></p></div><p></p><p></p>


1959 ◽  
Vol 234 (5) ◽  
pp. 1108-1111
Author(s):  
Bo G. Malmström ◽  
J.R. Kimmel ◽  
Emil L. Smith

1993 ◽  
Vol 69 (03) ◽  
pp. 240-246 ◽  
Author(s):  
Midori Shima ◽  
Dorothea Scandella ◽  
Akira Yoshioka ◽  
Hiroaki Nakai ◽  
Ichiro Tanaka ◽  
...  

SummaryA neutralizing monoclonal antibody, NMC-VIII/5, recognizing the 72 kDa thrombin-proteolytic fragment of factor VIII light chain was obtained. Binding of the antibody to immobilized factor VIII (FVIII) was completely blocked by a light chain-specific human alloantibody, TK, which inhibits FVIII activity. Immunoblotting analysis with a panel of recombinant protein fragments of the C2 domain deleted from the amino-terminal or the carboxy-terminal ends demonstrated binding of NMC-VIII/5 to an epitope located between amino acid residues 2170 and 2327. On the other hand, the epitope of the inhibitor alloantibody, TK, was localized to 64 amino acid residues from 2248 to 2312 using the same recombinant fragments. NMC-VIII/5 and TK inhibited FVIII binding to immobilized von Willebrand factor (vWF). The IC50 of NMC-VIII/5 for the inhibition of binding to vWF was 0.23 μg/ml for IgG and 0.2 μg/ml for F(ab)'2. This concentration was 100-fold lower than that of a monoclonal antibody NMC-VIII/10 which recognizes the amino acid residues 1675 to 1684 within the amino-terminal portion of the light chain. The IC50 of TK was 11 μg/ml by IgG and 6.3 μg/ml by F(ab)'2. Furthermore, NMC-VIII/5 and TK also inhibited FVIII binding to immobilized phosphatidylserine. The IC50 for inhibition of phospholipid binding of NMC-VIII/5 and TK (anti-FVIII inhibitor titer of 300 Bethesda units/mg of IgG) was 10 μg/ml.


Sign in / Sign up

Export Citation Format

Share Document