scholarly journals PSTPIP: A Tyrosine Phosphorylated Cleavage Furrow–associated Protein that Is a Substrate for a PEST Tyrosine Phosphatase

1997 ◽  
Vol 138 (4) ◽  
pp. 845-860 ◽  
Author(s):  
Susan Spencer ◽  
Donald Dowbenko ◽  
Jill Cheng ◽  
Wenlu Li ◽  
Jennifer Brush ◽  
...  

We have investigated proteins which interact with the PEST-type protein tyrosine phosphatase, PTP hematopoietic stem cell fraction (HSCF), using the yeast two-hybrid system. This resulted in the identification of proline, serine, threonine phosphatase interacting protein (PSTPIP), a novel member of the actin- associated protein family that is homologous to Schizosaccharomyces pombe CDC15p, a phosphorylated protein involved with the assembly of the actin ring in the cytokinetic cleavage furrow. The binding of PTP HSCF to PSTPIP was induced by a novel interaction between the putative coiled-coil region of PSTPIP and the COOH-terminal, proline-rich region of the phosphatase. PSTPIP is tyrosine phosphorylated both endogenously and in v-Src transfected COS cells, and cotransfection of dominant-negative PTP HSCF results in hyperphosphorylation of PSTPIP. This dominant-negative effect is dependent upon the inclusion of the COOH-terminal, proline-rich PSTPIP-binding region of the phosphatase. Confocal microscopy analysis of endogenous PSTPIP revealed colocalization with the cortical actin cytoskeleton, lamellipodia, and actin-rich cytokinetic cleavage furrow. Overexpression of PSTPIP in 3T3 cells resulted in the formation of extended filopodia, consistent with a role for this protein in actin reorganization. Finally, overexpression of mammalian PSTPIP in exponentially growing S. pombe results in a dominant-negative inhibition of cytokinesis. PSTPIP is therefore a novel actin-associated protein, potentially involved with cytokinesis, whose tyrosine phosphorylation is regulated by PTP HSCF.

Genetics ◽  
2002 ◽  
Vol 162 (2) ◽  
pp. 633-645 ◽  
Author(s):  
Guido Cuperus ◽  
David Shore

Abstract We previously described two classes of SIR2 mutations specifically defective in either telomeric/HM silencing (class I) or rDNA silencing (class II) in S. cerevisiae. Here we report the identification of genes whose protein products, when either overexpressed or directly tethered to the locus in question, can establish silencing in SIR2 class I mutants. Elevated dosage of SCS2, previously implicated as a regulator of both inositol biosynthesis and telomeric silencing, suppressed the dominant-negative effect of a SIR2-143 mutation. In a genetic screen for proteins that restore silencing when tethered to a telomere, we isolated ESC2 and an uncharacterized gene, (YOL017w), which we call ESC8. Both Esc2p and Esc8p interact with Sir2p in two-hybrid assays, and the Esc8p-Sir2 interaction is detected in vitro. Interestingly, Esc8p has a single close homolog in yeast, the ISW1-complex factor Ioc3p, and has also been copurified with Isw1p, raising the possibility that Esc8p is a component of an Isw1p-containing nucleosome remodeling complex. Whereas esc2 and esc8 deletion mutants alone have only marginal silencing defects, cells lacking Isw1p show a strong silencing defect at HMR but not at telomeres. Finally, we show that Esc8p interacts with the Gal11 protein, a component of the RNA pol II mediator complex.


2008 ◽  
Vol 181 (3) ◽  
pp. 497-510 ◽  
Author(s):  
Taichi Hara ◽  
Akito Takamura ◽  
Chieko Kishi ◽  
Shun-ichiro Iemura ◽  
Tohru Natsume ◽  
...  

Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51–like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.


2012 ◽  
Vol 23 (3) ◽  
pp. 412-422 ◽  
Author(s):  
Wenyu Liu ◽  
Felipe H. Santiago-Tirado ◽  
Anthony Bretscher

Formins are conserved proteins that assemble unbranched actin filaments in a regulated, localized manner. Budding yeast's two formins, Bni1p and Bnr1p, assemble actin cables necessary for polarized cell growth and organelle segregation. Here we define four regions in Bni1p that contribute to its localization to the bud and at the bud neck. The first (residues 1–333) requires dimerization for its localization and encompasses the Rho-binding domain. The second (residues 334–821) covers the Diaphanous inhibitory–dimerization–coiled coil domains, and the third is the Spa2p-binding domain. The fourth region encompasses the formin homology 1–formin homology 2–COOH region of the protein. These four regions can each localize to the bud cortex and bud neck at the right stage of the cell cycle independent of both F-actin and endogenous Bni1p. The first three regions contribute cumulatively to the proper localization of Bni1p, as revealed by the effects of progressive loss of these regions on the actin cytoskeleton and fidelity of spindle orientation. The fourth region contributes to the localization of Bni1p in tiny budded cells. Expression of mislocalized Bni1p constructs has a dominant-negative effect on both growth and nuclear segregation due to mislocalized actin assembly. These results define an unexpected complexity in the mechanism of formin localization and function.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4785-4785
Author(s):  
Claire Mazumdar ◽  
Rui Li ◽  
Jason Buenrostro ◽  
Howard Y. Chang ◽  
Ravi Majeti

Abstract The cohesin complex is a multiprotein complex involved in a number of cellular processes including sister chromatid cohesion in mitosis, replication fork organization, and regulation of chromatin accessibility for gene expression. Mutations in genes encoding the members of the cohesin complex (SMC1A, SMC3, STAG2, and RAD21) occur in about 10-15% of de novo acute myeloid leukemia (AML) patients. Apart from AML, cohesin mutations have been found in many human cancers indicating a central role for this complex in oncogenesis. In AML, our prior studies have demonstrated that cohesin mutations occur in pre-leukemic hematopoietic stem and progenitor cells (HSPC) that retain normal differentiation potential. Thus, these mutations are likely key initiating events in leukemia pathogenesis. Due to their importance in AML evolution, we sought to determine the effect of these mutations on human hematopoiesis. Cohesin mutations typically occur as heterozygous mutations throughout the genes suggesting either a haploinsufficiency or dominant negative effect. Co-immunoprecipitation experiments in primary human AML samples showed marked decrease in binding between RAD21 and SMC1A in RAD21/SMC1A-mutant AML. These results suggest a dominant negative effect of cohesin mutants on complex formation. In an effort to characterize the phenotype of cohesin complex mutations in AML, we generated human AML cell lines engineered to express wildtype (WT) or mutant cohesin components under the control of a doxycycline-inducible promoter. We chose the TF-1 erythroleukemia cell line due to its ability to differentiate down the erythroid lineage in response to erythropoietin (EPO). We found that cohesin mutant cell lines showed a significant decrease in erythroid differentiation upon exposure to EPO as determined by surface expression of glycophorin A (GPA) and RNA expression of fetal hemoglobin and KLF-1, a key erythroid transcription factor, suggesting that cohesin mutations act in a dominant negative manner to impair differentiation. We next investigated the impact of cohesin complex mutations on normal HSPCs from primary human cord blood. We transduced CD34+ cord blood cells with lentivirus encoding constitutive expression of either WT or mutant cohesin components. Transduced cells were isolated and cultured under several conditions. First, cells were cultured with cytokines designed to promote retention of HSPCs, and cord blood cells expressing mutant cohesin showed significant retention of CD34+ expression as compared to WT or control cells. Second, cells were cultured under conditions designed to promote granulocytic/monocytic differentiation, and cohesin mutant-expressing cells showed a significant decrease in CD14+ expression compared to controls. Third, cells were cultured under conditions designed to promote erythroid differentiation, and cohesin mutant cells showed a significant decrease in CD71 and GPA-double positive erythroid cells. Together, this data suggests that cohesin complex mutations impart a differentiation block on primary human HSPCs. Finally, we investigated whether cohesin mutations affected the serial colony replating ability of human HSPCs in vitro. Primary human cord blood HSPCs were transduced with cohesin mutant-encoding lentivirus, sorted, and cultured in methylcellulose for 14 days. No differences were observed in the colony number or type in the primary plating. However, cohesin-mutant cells exhibited increased serial replating potential beyond the 3rd replating, with essentially no control or WT colonies after the 2ndreplating. In summary, our results indicate that cohesin complex mutations impair HSPC differentiation and increase in vitro replating of primary human cells. The mechanisms by which this occurs are currently being investigated, but preliminary data suggests that mutations in cohesin affect global chromatin accessibility. These results are consistent with a model of mutational acquisition in AML that we have proposed, in which pre-leukemic mutations occur in genes involved in global regulation of gene expression through epigenetic mechanisms that impair differentiation and/or affect self-renewal (such as IDH1/2, TET2, DNMT3A, and cohesin), whereas late mutations occur in genes that generally lead to an increase in activated signaling and proliferation (such as FLT3 and RAS). Disclosures No relevant conflicts of interest to declare.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0252327
Author(s):  
Lisa Stephan ◽  
Marc Jakoby ◽  
Arijit Das ◽  
Eva Koebke ◽  
Martin Hülskamp

The directional movement and positioning of organelles and macromolecules is essential for regulating and maintaining cellular functions in eukaryotic cells. In plants, these processes are actin-based and driven by class XI myosins, which transport various cargos in a directed manner. As the analysis of myosin function is challenging due to high levels of redundancy, dominant negative acting truncated myosins have frequently been used to study intracellular transport processes. A comparison of the dominant negative effect of the coiled-coil domains and the GTD domains revealed a much stronger inhibition of P-body movement by the GTD domains. In addition, we show that the GTD domain does not inhibit P-body movement when driven by a hybrid myosin in which the GTD domain was replaced by DCP2. These data suggest that the dominant negative effect of myosin tails involves a competition of the GTD domains for cargo binding sites.


Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 285-296 ◽  
Author(s):  
Scott E Baker ◽  
James A Lorenzen ◽  
Steven W Miller ◽  
Thomas A Bunch ◽  
Alison L Jannuzi ◽  
...  

Abstract The Drosophila PS1 and PS2 integrins are required to maintain the connection between the dorsal and ventral wing epithelia. If αPS subunits are inappropriately expressed during early pupariation, the epithelia separate, causing a wing blister. Two lines of evidence indicate that this apparent loss-of-function phenotype is not a dominant negative effect, but is due to inappropriate expression of functional integrins: wing blisters are not generated efficiently by misexpression of loss-of-function αPS2 subunits with mutations that inhibit ligand binding, and gain-of-function, hyperactivated mutant αPS2 proteins cause blistering at expression levels well below those required by wild-type proteins. A genetic screen for dominant suppressors of wing blisters generated null alleles of a gene named moleskin, which encodes the protein DIM-7. DIM-7, a Drosophila homolog of vertebrate importin-7, has recently been shown to bind the SHP-2 tyrosine phosphatase homolog Corkscrew and to be important in the nuclear translocation of activated D-ERK. Consistent with this latter finding, homozygous mutant clones of moleskin fail to grow in the wing. Genetic tests suggest that the moleskin suppression of wing blisters is not directly related to inhibition of D-ERK nuclear import. These data are discussed with respect to the possible regulation of integrin function by cytoplasmic ERK.


2016 ◽  
Vol 150 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Adriana Geisinger ◽  
Ricardo Benavente

Human infertility is often classified as idiopathic in both males and females. Meiotic errors may account for at least part of these cases. As the synaptonemal complex (SC, a meiosis-specific protein scaffold) is essential for successful meiosis progression, in this paper, we analyzed the mutations in genes coding for SC components described in infertile patients to assess to what extent alterations in the SC can be related to human infertility. So far, mutations in SYCP3 and SYCE1 genes have been reported. While most SYCP3 mutations are heterozygous mutations with dominant-negative effect on the region encoding the C-terminal coiled coil of the protein, SYCE1 mutations are homozygous, which is consistent with a recessive inheritance. Similarities and differences between males and females as well as between mice and humans have been found and are discussed herein. The results suggest that a low percentage of human infertility cases may be explained by mutations in genes coding for SC components. The characterization of these mutations, together with available information from the study of knockout mice, will enable a deeper understanding of the underlying molecular bases for some of the cases of idiopathic infertility.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1455-1462
Author(s):  
José L Barra ◽  
Mario R Mautino ◽  
Alberto L Rosa

eth-1r a thermosensitive allele of the Neurospora crassa S-adenosylmethionine (AdoMet) synthetase gene that confers ethionine resistance, has been cloned and sequenced. Replacement of an aspartic amino acid residue (D48 → N48), perfectly conserved in prokaryotic, fungal and higher eukaryotic AdoMet synthetases, was found responsible for both thermosensitivity and ethionine resistance conferred by eth-1r. Gene fusion constructs, designed to overexpress eth-1r in vivo, render transformant cells resistant to ethionine. Dominance of ethionine resistance was further demonstrated in eth-1  +/eth-1r partial diploids carrying identical gene doses of both alleles. Heterozygous eth-1  +/eth-1r cells have, at the same time, both the thermotolerance conferred by eth-1  + and the ethionine-resistant phenotype conferred by eth-1r. AdoMet levels and AdoMet synthetase activities were dramatically decreased in heterozygous eth-1  +/eth-1r cells. We propose that this negative effect exerted by eth-1r results from the in vivo formation of heteromeric eth-1  +/eth-1r AdoMet synthetase molecules.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Sign in / Sign up

Export Citation Format

Share Document