scholarly journals Cytoskeletal Protein ABP-280 Directs the Intracellular Trafficking of Furin and Modulates Proprotein Processing in the Endocytic Pathway

1997 ◽  
Vol 139 (7) ◽  
pp. 1719-1733 ◽  
Author(s):  
Gseping Liu ◽  
Laurel Thomas ◽  
Robin A. Warren ◽  
Caroline A. Enns ◽  
C. Casey Cunningham ◽  
...  

Furin catalyzes the proteolytic maturation of many proproteins within the trans-Golgi network (TGN)/endosomal system. Furin's cytosolic domain (cd) directs both the compartmentalization to and transit between its manifold processing compartments (i.e., TGN/biosynthetic pathway, cell surface, and endosomes). Here we report the identification of the first furin cd sorting protein, ABP-280 (nonmuscle filamin), an actin gelation protein. The furin cd was used as bait in a yeast two-hybrid screen to identify ABP-280 as a furin-binding protein. Binding analyses in vitro and coimmunoprecipitation studies in vivo showed that furin and ABP-280 interact directly and that ABP-280 tethers furin molecules to the cell surface. Quantitative analysis of both ABP-280-deficient and genetically replete cells showed that ABP-280 modulates the rate of internalization of furin but not of the transferrin receptor, a cycling receptor. However, although ABP-280 directs the rate of furin internalization, the efficiency of sorting of the endoprotease from the cell surface to early endosomes is independent of expression of ABP-280. By contrast, efficient sorting of furin from early endosomes to the TGN requires expression of ABP-280. In addition, ABP-280 is also required for the correct localization of late endosomes (dextran bead uptake) and lysosomes (LAMP-1 staining), demonstrating a pleiotropic role for this actin binding protein in the organization of cellular compartments and directing protein traffic. Finally, and consistent with the trafficking studies on furin, we showed that ABP-280 modulates the processing of furin substrates in the endocytic but not the biosynthetic pathways. The novel roles of ABP-280 and the cytoskeleton in the sorting of furin in the TGN/ endosomal system and the formation of proprotein processing compartments are discussed.

2002 ◽  
Vol 159 (6) ◽  
pp. 993-1004 ◽  
Author(s):  
Christine L. Humphries ◽  
Heath I. Balcer ◽  
Jessica L. D'Agostino ◽  
Barbara Winsor ◽  
David G. Drubin ◽  
...  

Mechanisms for activating the actin-related protein 2/3 (Arp2/3) complex have been the focus of many recent studies. Here, we identify a novel mode of Arp2/3 complex regulation mediated by the highly conserved actin binding protein coronin. Yeast coronin (Crn1) physically associates with the Arp2/3 complex and inhibits WA- and Abp1-activated actin nucleation in vitro. The inhibition occurs specifically in the absence of preformed actin filaments, suggesting that Crn1 may restrict Arp2/3 complex activity to the sides of filaments. The inhibitory activity of Crn1 resides in its coiled coil domain. Localization of Crn1 to actin patches in vivo and association of Crn1 with the Arp2/3 complex also require its coiled coil domain. Genetic studies provide in vivo evidence for these interactions and activities. Overexpression of CRN1 causes growth arrest and redistribution of Arp2 and Crn1p into aberrant actin loops. These defects are suppressed by deletion of the Crn1 coiled coil domain and by arc35-26, an allele of the p35 subunit of the Arp2/3 complex. Further in vivo evidence that coronin regulates the Arp2/3 complex comes from the observation that crn1 and arp2 mutants display an allele-specific synthetic interaction. This work identifies a new form of regulation of the Arp2/3 complex and an important cellular function for coronin.


2018 ◽  
Author(s):  
Swagata Das ◽  
Priyanka Dutta ◽  
Mohit Mazumder ◽  
Soma Seal ◽  
Kheerthana Duraivelan ◽  
...  

Abstractnpist is the neuronal isoform of PIST, a trans-golgi associated protein involved in major modulation of vesicular trafficking. nPIST interacts with glutamate delta2 receptor (GluRδ2) in Purkinje cells. Our study shows nPIST as a novel actin binding protein. Our structure based sequence analysis shows nPIST contains one WH2-like domain. Further our experimental analysis illustrates that fragment of nPIST consisting of WH2-like domain binds to actin. Moreover it was found that nPIST contains several regions involved in interaction with actin. The binding of nPIST to actin through multiple actin binding regions facilitated actin filament stabilization in vitro. In vivo, nPIST localized actin in perinuclear region as a blotch when ectopically expressed.


Cancers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1663 ◽  
Author(s):  
Arne Velthaus ◽  
Kerstin Cornils ◽  
Jan K. Hennigs ◽  
Saskia Grüb ◽  
Hauke Stamm ◽  
...  

Leukemia-initiating cells reside within the bone marrow in specialized niches where they undergo complex interactions with their surrounding stromal cells. We have identified the actin-binding protein Plastin-3 (PLS3) as potential player within the leukemic bone marrow niche and investigated its functional role in acute myeloid leukemia. High expression of PLS3 was associated with a poor overall and event-free survival for AML patients. These findings were supported by functional in vitro and in vivo experiments. AML cells with a PLS3 knockdown showed significantly reduced colony numbers in vitro while the PLS3 overexpression variants resulted in significantly enhanced colony numbers compared to their respective controls. Furthermore, the survival of NSG mice transplanted with the PLS3 knockdown cells showed a significantly prolonged survival in comparison to mice transplanted with the control AML cells. Further studies should focus on the underlying leukemia-promoting mechanisms and investigate PLS3 as therapeutic target.


1997 ◽  
Vol 136 (4) ◽  
pp. 845-857 ◽  
Author(s):  
C. Casey Cunningham ◽  
Nicole Leclerc ◽  
Lisa A. Flanagan ◽  
Mei Lu ◽  
Paul A. Janmey ◽  
...  

The emergence of processes from cells often involves interactions between microtubules and microfilaments. Interactions between these two cytoskeletal systems are particularly apparent in neuronal growth cones. The juvenile isoform of the neuronal microtubule-associated protein 2 (MAP2c) is present in growth cones, where we hypothesize it mediates interactions between microfilaments and microtubules. To approach this problem in vivo, we used the human melanoma cell, M2, which lacks actin-binding protein-280 (ABP-280) and forms membrane blebs, which are not seen in wild-type or ABP-transfected cells. The microinjection of tau or mature MAP2 rescued the blebbing phenotype; MAP2c not only caused cessation of blebbing but also induced the formation of two distinct cellular structures. These were actin-rich lamellae, which often included membrane ruffles, and microtubule-bearing processes. The lamellae collapsed after treatment with cytochalasin D, and the processes retracted after treatment with colchicine. MAP2c was immunocytochemically visualized in zones of the cell that were devoid of tubulin, such as regions within the lamellae and in association with membrane ruffles. In vitro rheometry confirmed that MAP2c is an efficient actin gelation protein capable of organizing actin filaments into an isotropic array at very low concentrations; tau and mature MAP2 do not share this rheologic property. These results suggest that MAP2c engages in functionally specific interactions not only with microtubules but also with microfilaments.


2006 ◽  
Vol 17 (10) ◽  
pp. 4318-4329 ◽  
Author(s):  
Morten K. Larsen ◽  
Simon Tuck ◽  
Nils J. Færgeman ◽  
Jens Knudsen

The budding and fission of vesicles during membrane trafficking requires many proteins, including those that coat the vesicles, adaptor proteins that recruit components of the coat, and small GTPases that initiate vesicle formation. In addition, vesicle formation in vitro is promoted by the hydrolysis of acyl-CoA lipid esters. The mechanisms by which these lipid esters are directed to the appropriate membranes in vivo, and their precise roles in vesicle biogenesis, are not yet understood. Here, we present the first report on membrane associated ACBP domain-containing protein-1 (MAA-1), a novel membrane-associated member of the acyl-CoA–binding protein family. We show that in Caenorhabditis elegans, MAA-1 localizes to intracellular membrane organelles in the secretory and endocytic pathway and that mutations in maa-1 reduce the rate of endosomal recycling. A lack of maa-1 activity causes a change in endosomal morphology. Although in wild type, many endosomal organelles have long tubular protrusions, loss of MAA-1 activity results in loss of the tubular domains, suggesting the maa-1 is required for the generation or maintenance of these domains. Furthermore, we demonstrate that MAA-1 binds fatty acyl-CoA in vitro and that this ligand-binding ability is important for its function in vivo. Our results are consistent with a role for MAA-1 in an acyl-CoA–dependent process during vesicle formation.


2001 ◽  
Vol 154 (6) ◽  
pp. 1209-1224 ◽  
Author(s):  
Åsa E.Y. Engqvist-Goldstein ◽  
Robin A. Warren ◽  
Michael M. Kessels ◽  
James H. Keen ◽  
John Heuser ◽  
...  

Huntingtin-interacting protein 1 related (Hip1R) is a novel component of clathrin-coated pits and vesicles and is a mammalian homologue of Sla2p, an actin-binding protein important for both actin organization and endocytosis in yeast. Here, we demonstrate that Hip1R binds via its putative central coiled-coil domain to clathrin, and provide evidence that Hip1R and clathrin are associated in vivo at sites of endocytosis. First, real-time analysis of Hip1R–YFP and DsRed–clathrin light chain (LC) in live cells revealed that these proteins show almost identical temporal and spatial regulation at the cell cortex. Second, at the ultrastructure level, immunogold labeling of ‘unroofed’ cells showed that Hip1R localizes to clathrin-coated pits. Third, overexpression of Hip1R affected the subcellular distribution of clathrin LC. Consistent with a functional role for Hip1R in endocytosis, we also demonstrated that it promotes clathrin cage assembly in vitro. Finally, we showed that Hip1R is a rod-shaped apparent dimer with globular heads at either end, and that it can assemble clathrin-coated vesicles and F-actin into higher order structures. In total, Hip1R's properties suggest an early endocytic function at the interface between clathrin, F-actin, and lipids.


1998 ◽  
Vol 142 (6) ◽  
pp. 1399-1411 ◽  
Author(s):  
Sean S. Molloy ◽  
Laurel Thomas ◽  
Craig Kamibayashi ◽  
Marc C. Mumby ◽  
Gary Thomas

The regulated sorting of proteins within the trans-Golgi network (TGN)/endosomal system is a key determinant of their biological activity in vivo. For example, the endoprotease furin activates of a wide range of proproteins in multiple compartments within the TGN/endosomal system. Phosphorylation of its cytosolic domain by casein kinase II (CKII) promotes the localization of furin to the TGN and early endosomes whereas dephosphorylation is required for efficient transport between these compartments (Jones, B.G., L. Thomas, S.S. Molloy, C.D. Thulin, M.D. Fry, K.A. Walsh, and G. Thomas. 1995. EMBO [Eur. Mol. Biol. Organ.] J. 14:5869–5883). Here we show that phosphorylated furin molecules internalized from the cell surface are retained in a local cycling loop between early endosomes and the plasma membrane. This cycling loop requires the phosphorylation state-dependent furin-sorting protein PACS-1, and mirrors the trafficking pathway described recently for the TGN localization of furin (Wan, L., S.S. Molloy, L. Thomas, G. Liu, Y. Xiang, S.L. Ryback, and G. Thomas. 1998. Cell. 94:205–216). We also demonstrate a novel role for protein phosphatase 2A (PP2A) in regulating protein localization in the TGN/endosomal system. Using baculovirus recombinants expressing individual PP2A subunits, we show that the dephosphorylation of furin in vitro requires heterotrimeric phosphatase containing B family regulatory subunits. The importance of this PP2A isoform in directing the routing of furin from early endosomes to the TGN was established using SV-40 small t antigen as a diagnostic tool in vivo. The role of both CKII and PP2A in controlling multiple sorting steps in the TGN/endosomal system indicates that the distribution of itinerant membrane proteins may be acutely regulated via signal transduction pathways.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Maria Malm ◽  
Kirsi Tamminen ◽  
Suvi Lappalainen ◽  
Timo Vesikari ◽  
Vesna Blazevic

We have recently shown that tubular form of rotavirus (RV) recombinant VP6 protein has anin vivoadjuvant effect on the immunogenicity of norovirus (NoV) virus-like particle (VLP) vaccine candidate. In here, we investigatedin vitroeffect of VP6 on antigen presenting cell (APC) activation and maturation and whether VP6 facilitates NoV VLP uptake by these APCs. Mouse macrophage cell line RAW 264.7 and dendritic cell line JAWSII were used as model APCs. Internalization of VP6, cell surface expression of CD40, CD80, CD86, and major histocompatibility class II molecules, and cytokine and chemokine production were analyzed. VP6 nanotubes were efficiently internalized by APCs. VP6 upregulated the expression of cell surface activation and maturation molecules and induced secretion of several proinflammatory cytokines and chemokines. The mechanism of VP6 action was shown to be partially dependent on lipid raft-mediated endocytic pathway as shown by methyl-β-cyclodextrin inhibition on tumor necrosis factorαsecretion. These findings add to the understanding of mechanism by which VP6 exerts its immunostimulatory and immunomodulatory actions and further support its use as a part of nonlive RV-NoV combination vaccine.


2016 ◽  
Vol 31 (9) ◽  
pp. 1701-1712 ◽  
Author(s):  
Detina Zalli ◽  
Lynn Neff ◽  
Kenichi Nagano ◽  
Nah Young Shin ◽  
Walter Witke ◽  
...  

2001 ◽  
Vol 281 (5) ◽  
pp. L1189-L1199 ◽  
Author(s):  
Aldo Baritussio ◽  
Stefano Marzini ◽  
Marco Agostini ◽  
Antonella Alberti ◽  
Cristina Cimenti ◽  
...  

Amiodarone may induce lung damage by direct toxicity or indirectly through inflammation. To clarify the mechanism of direct toxicity, we briefly exposed rabbit alveolar macrophages to amiodarone and analyzed their morphology, synthesis, and degradation of dipalmitoylphosphatidylcholine (DPPC); distribution of lysosomal enzymes; and uptake of diphtheria toxin and surfactant protein (SP) A used as tracers of the endocytic pathway. Furthermore, in newborn rabbits, we studied the clearance of DPPC and SP-A instilled into the trachea together with increasing amounts of amiodarone. We found that in vitro amiodarone decreases the surface density of mitochondria and lysosomes while increasing the surface density of inclusion bodies, increases the incorporation of choline into DPPC, modifies the distribution of lysosomal enzymes, and does not affect the uptake and processing of diphtheria toxin but inhibits the degradation of SP-A. In vivo amiodarone inhibits the degradation of SP-A but not of DPPC. We conclude that the acute exposure to amiodarone perturbs the endocytic pathway acting after the early endosomes, alters the traffic of lysosomal enzymes, and interferes with the turnover of SP-A.


Sign in / Sign up

Export Citation Format

Share Document