scholarly journals Receptor-independent Role of Urokinase-Type Plasminogen Activator in Pericellular Plasmin and Matrix Metalloproteinase Proteolysis during Vascular Wound Healing in Mice

1998 ◽  
Vol 140 (1) ◽  
pp. 233-245 ◽  
Author(s):  
Peter Carmeliet ◽  
Lieve Moons ◽  
Mieke Dewerchin ◽  
Steven Rosenberg ◽  
Jean-Marc Herbert ◽  
...  

It has been proposed that the urokinase receptor (u-PAR) is essential for the various biological roles of urokinase-type plasminogen activator (u-PA) in vivo, and that smooth muscle cells require u-PA for migration during arterial neointima formation. The present study was undertaken to evaluate the role of u-PAR during this process in mice with targeted disruption of the u-PAR gene (u-PAR−/−). Surprisingly, u-PAR deficiency did not affect arterial neointima formation, neointimal cell accumulation, or migration of smooth muscle cells. Indeed, topographic analysis of arterial wound healing after electric injury revealed that u-PAR−/− smooth muscle cells, originating from the uninjured borders, migrated over a similar distance and at a similar rate into the necrotic center of the wound as wild-type (u-PAR+/+) smooth muscle cells. In addition, u-PAR deficiency did not impair migration of wounded cultured smooth muscle cells in vitro. There were no genotypic differences in reendothelialization of the vascular wound. The minimal role of u-PAR in smooth muscle cell migration was not because of absent expression, since wild-type smooth muscle cells expressed u-PAR mRNA and functional receptor in vitro and in vivo. Pericellular plasmin proteolysis, evaluated by degradation of 125I-labeled fibrin and activation of zymogen matrix metalloproteinases, was similar for u-PAR−/− and u-PAR+/+ cells. Immunoelectron microscopy of injured arteries in vivo revealed that u-PA was bound on the cell surface of u-PAR+/+ cells, whereas it was present in the pericellular space around u-PAR−/− cells. Taken together, these results suggest that binding of u-PA to u-PAR is not required to provide sufficient pericellular u-PA–mediated plasmin proteolysis to allow cellular migration into a vascular wound.

2021 ◽  
Vol 18 (3) ◽  
pp. 147916412110273
Author(s):  
Yusaku Mori ◽  
Marel Gonzalez Medina ◽  
Zhiwei Liu ◽  
June Guo ◽  
Luke S Dingwell ◽  
...  

Background: Insulin exerts vasculoprotective effects on endothelial cells (ECs) and growth-promoting effects on vascular smooth muscle cells (SMCs) in vitro, and suppresses neointimal growth in vivo. Here we determined the role of ECs and SMCs in the effect of insulin on neointimal growth. Methods: Mice with transgene CreERT2 under the control of EC-specific Tie2 (Tie2-Cre) or SMC-specific smooth muscle myosin heavy chain promoter/enhancer (SMMHC-Cre) or littermate controls were crossbred with mice carrying a loxP-flanked insulin receptor (IR) gene. After CreERT2-loxP-mediated recombination was induced by tamoxifen injection, mice received insulin pellet or sham (control) implantation, and underwent femoral artery wire injury. Femoral arteries were collected for morphological analysis 28 days after wire injury. Results: Tamoxifen-treated Tie2-Cre+ mice showed lower IR expression in ECs, but not in SMCs, than Tie2-Cre− mice. Insulin treatment reduced neointimal area after arterial injury in Tie2-Cre− mice, but had no effect in Tie2-Cre+ mice. Tamoxifen-treated SMMHC-Cre+ mice showed lower IR expression in SMCs, but not in ECs, than SMMHC-Cre− mice. Insulin treatment reduced neointimal area in SMMHC-Cre− mice, whereas unexpectedly, it failed to inhibit neointima formation in SMMHC-Cre+ mice. Conclusion: Insulin action in both ECs and SMCs is required for the “anti-restenotic” effect of insulin in vivo.


Author(s):  
Chenfeng Mao ◽  
Zihan Ma ◽  
Yiting Jia ◽  
Weihao Li ◽  
Nan Xie ◽  
...  

Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro , and compared with wild-type (WT) mice, nidogen-2 -/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2 -/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo . Nidogen-2 is required for Jagged1-Notch3 signaling.


2010 ◽  
Vol 17 (5) ◽  
pp. 503-509 ◽  
Author(s):  
Chie Aoki ◽  
Yoshiyuki Hattori ◽  
Atsuko Tomizawa ◽  
Teruo Jojima ◽  
Kikuo Kasai

2021 ◽  
Vol 23 (Supplement_G) ◽  
Author(s):  
Fabiola Boccuto ◽  
Laura Tammè ◽  
Claudio Iaconetti ◽  
Jolanda Sabatino ◽  
Alberto Polimeni ◽  
...  

Abstract Aims Vascular smooth muscle cells (VSMCs) play a key role in the vessel wall, being active partaker in vascular remodelling and influencing multiple pathophysiological phenomena, such as progression of atherosclerosis, in-stent restenosis and vascular reactivity. Recently antisense oligonucleotides have shown promising results as a therapeutic option. The aim of this study was to analyse the expression profile and function of T-UCRs in vascular smooth muscle cells (VSMCs)—both in vitro and in vivo—and to evaluate the effects of their inhibition by the use of specific antisense oligonucleotides. Methods After obtaining cell cultures of vascular smooth muscle cells, we modified their phenotype varying growth conditions. A microarray and qRT-PCR expression profile analysis and a cell cycle analysis with cell proliferation/apoptosis/migration assay were performed. In vivo studies were performed on rat carotids after cell damage and administration of specific antisense oligonucleotides. Results There were significant differences in the expression of T-UCRs in VSMCs with a proliferating and quiescent phenotype. In particular, 5 T-UCRs were found to be upregulated in VSMCs. These types of cells were subsequently transfected with specific antisense oligonucleotides obtaining a reduction in their proliferative activity in particular with the inhibition of the T-UCRs uc.194 and uc.443 + A. MiR-10A and miR-34b-5p were identified with complementary sequences respectively to uc.194 and uc.443 + A. The increase of these miRs following the inhibition of the T-UCRs were closely related to the inhibition of the proliferative signals of VSMCs. Similarly, the same results were obtained in vivo. Conclusions The expression levels of non-coding RNAs uc.194 and uc. 443 + A increase in proliferating smooth muscle cells in vitro and in the vascular wall following damage, suggesting an important role of these molecules in the phenomenon of intra-stent restenosis. Through the inhibition of uc.194 and uc.443 + A using an antisense strategy, we demonstrated a reduction in cell proliferation and migration processes and, consequently, in the formation of neointima. A possible relationship was also highlighted between the aforementioned non-coding RNAs and some micro-RNAs (miR-10A and miR-34b-5p), negative regulators of the proliferative phenotype of VSMCs. The inhibition of the analysed T-UCRs would allow the maintenance of the contractile phenotype thanks to the activity of the miRs analysed in this study. Our results might pave the way for the identification of new therapeutic targets in order to prevent and reduce the incidence of intra-stent restenosis.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Mirnal A Chaudhary ◽  
Go Urabe ◽  
Alex Hayden ◽  
Sarah Franco ◽  
Xudong Shi ◽  
...  

Background: After vascular injury, vascular smooth muscle cells (SMCs) switch from a differentiated contractile state to synthetic de-differentiated phenotype which contributes to the pathophysiology of restenosis. Experimental data generated by our lab indicate that TGF-β downregulates contractile proteins and stimulates migration. To understand how TGF-β promotes SMC phenotypic switch in injured arteries, we performed an Affymetrix Array analysis and identified Lymphocyte Specific Protein-1 (LSP1) among other upregulated genes. LSP1 is known to play a role in neutrophil extravasation, however the role of LSP1 within SMCs is unknown. We hypothesize that LSP1 contributes to SMC pathophysiological behavior through changes in cell architecture and migration in-vivo and in-vitro. Methods and Results: After carotid artery angioplasty, male Sprague-Dawley rats were sacrificed at 3, 7, and 14 days after injury for immunohistochemistry. Immunofluorescence staining revealed a unique upregulation of LSP1 within the neointima, media, and adventitia at 7 and 14 days, but not at 3 days after injury. Confocal images revealed that the LSP1 positive cells minimally express α-SMA (Pierson’s Coefficient, r=.017). Additional characterization experiments using immune cell markers CD3 and CD45 show no co-localization with LSP1 positive cells. To mimic the in-vivo neointimal cells and vascular injury induced de-differentiation in-vitro , rat A10 cells were treated with solvent or PDGF-bb (10 ng/mL). Quantitative RT-PCR demonstrated an upregulation of LSP1 mRNA after 24 hrs of PDGF-BB stimulation. Using Western Blotting, we confirm an upregulation of LSP1 protein after 48 hrs of PDGF-BB stimulation. Lastly, we performed nuclear and cytoplasmic fractionation followed by Western Blotting which demonstrated that LSP1 is remained within cytoplasmic fraction of the A10 cell after treatment with PDGF-BB. Conclusion: These results demonstrate that LSP1 is increased in-vivo after balloon injury, and in-vitro after PDGF-BB stimulation. Experiments to characterize the identity of these LSP1 cells in-vivo are in process, with future in-vitro experiments to focus on the role of LSP1 phosphorylation as a part of cytoskeletal remodeling and cellular migration.


2014 ◽  
Vol 307 (3) ◽  
pp. H337-H345 ◽  
Author(s):  
Lara Gotha ◽  
Sang Yup Lim ◽  
Azriel B. Osherov ◽  
Rafael Wolff ◽  
Beiping Qiang ◽  
...  

Perlecan is a proteoglycan composed of a 470-kDa core protein linked to three heparan sulfate (HS) glycosaminoglycan chains. The intact proteoglycan inhibits the smooth muscle cell (SMC) response to vascular injury. Hspg2Δ3/Δ3 (MΔ3/Δ3) mice produce a mutant perlecan lacking the HS side chains. The objective of this study was to determine differences between these two types of perlecan in modifying SMC activities to the arterial injury response, in order to define the specific role of the HS side chains. In vitro proliferative and migratory activities were compared in SMC isolated from MΔ3/Δ3 and wild-type mice. Proliferation of MΔ3/Δ3 SMC was 1.5× greater than in wild type ( P < 0.001), increased by addition of growth factors, and showed a 42% greater migratory response than wild-type cells to PDGF-BB ( P < 0.001). In MΔ3/Δ3 SMC adhesion to fibronectin, and collagen types I and IV was significantly greater than wild type. Addition of DRL-12582, an inducer of perlecan expression, decreased proliferation and migratory response to PDGF-BB stimulation in wild-type SMC compared with MΔ3/Δ3. In an in vivo carotid artery wire injury model, the medial thickness, medial area/lumen ratio, and macrophage infiltration were significantly increased in the MΔ3/Δ3 mice, indicating a prominent role of the HS side chain in limiting vascular injury response. Mutant perlecan that lacks HS side chains had a marked reduction in the inhibition of in vitro SMC function and the in vivo arterial response to injury, indicating the critical role of HS side chains in perlecan function in the vessel wall.


1994 ◽  
Vol 269 (11) ◽  
pp. 8504-8509
Author(s):  
K.A. Pritchard ◽  
M.K. O'Banion ◽  
J.M. Miano ◽  
N. Vlasic ◽  
U.G. Bhatia ◽  
...  

2005 ◽  
Vol 108 (6) ◽  
pp. 523-530 ◽  
Author(s):  
Giovanna CASTOLDI ◽  
Serena REDAELLI ◽  
Willy M. M. van de GREEF ◽  
Cira R. T. di GIOIA ◽  
Giuseppe BUSCA ◽  
...  

Ang II (angiotensin II) has multiple effects on vascular smooth muscle cells through the modulation of different classes of genes. Using the mRNA differential-display method to investigate gene expression in rat aortic smooth muscle cells in culture in response to 3 h of Ang II stimulation, we observed that Ang II down-regulated the expression of a member of the family of transmembrane receptors for Wnt proteins that was identified as Fzd2 [Fzd (frizzled)-2 receptor]. Fzds are a class of highly conserved genes playing a fundamental role in the developmental processes. In vitro, time course experiments demonstrated that Ang II induced a significant increase (P<0.05) in Fzd2 expression after 30 min, whereas it caused a significant decrease (P<0.05) in Fzd2 expression at 3 h. A similar rapid up-regulation after Ang II stimulation for 30 min was evident for TGFβ1 (transforming growth factor β1; P<0.05). To investigate whether Ang II also modulated Fzd2 expression in vivo, exogenous Ang II was administered to Sprague–Dawley rats (200 ng·kg−1 of body weight·min−1; subcutaneously) for 1 and 4 weeks. Control rats received normal saline. After treatment, systolic blood pressure was significantly higher (P<0.01), whereas plasma renin activity was suppressed (P<0.01) in Ang II- compared with the saline-treated rats. Ang II administration for 1 week did not modify Fzd2 expression in aorta of Ang II-treated rats, whereas Ang II administration for 4 weeks increased Fzd2 mRNA expression (P<0.05) in the tunica media of the aorta, resulting in a positive immunostaining for fibronectin at this time point. In conclusion, our data demonstrate that Ang II modulates Fzd2 expression in aortic smooth muscle cells both in vitro and in vivo.


Sign in / Sign up

Export Citation Format

Share Document