contractile phenotype
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 26)

H-INDEX

31
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Li Zhang ◽  
Yi Ting Tao ◽  
Qin Hu ◽  
Ren Hua Yang ◽  
Jia Jia ◽  
...  

This study aimed to examine the inhibitory effects of Euonymine on in-stent restenosis (ISR) after percutaneous coronary intervention (PCI) and oxidized low-density lipoprotein (ox-LDL)-induced proliferation, migration, and pro-apoptotic of vascular smooth muscle cells (VSMCs) in vitro, and its potential mechanisms. Euonymine is a monomer component extracted from Tripterygium hypoglaucum (Levl) Hutch. Using in vitro models of rabbit carotid balloon injury and porcine atherosclerotic coronary implantation, we confirmed that Euonymine inhibited ISR after PCI. Furthermore, Euonymine inhibited VSMC phenotypic transformation by targeting AKT1 to regulate the PTEN/AKT1/m TOR signaling pathway, with exertion of anti-proliferative, anti-migratory, and pro-apoptotic effects on ox-LDL-induced cell injury model. Additionally, the study demonstrated that Euonymine induced apoptosis of VSMCs via the p38MAPK-related mitochondria-dependent apoptotic pathway. Collectively, these findings indicated that Euonymine drug-eluting stents inhibited ISR after PCI by targeting AKT1 and p38MAPK to enhance the contractile phenotype of VSMCs to prevent intimal hyperplasia development. This provides insights into a potential therapeutic strategy involving the beneficial effect of Euonymine drug-eluting stent on ISR. Keywords: Euonymine; Neointimal hyperplasia; Vascular smooth muscle cells, PTEN/AKT1/mTOR;p38MAPK; Proliferation; Migration; Apoptosis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Abudupataer Mieradilijiang ◽  
Shichao Zhu ◽  
Shiqiang Yan ◽  
Kehua Xu ◽  
Jingjing Zhang ◽  
...  

Background: Bicuspid aortic valve (BAV) is the most common congenital cardiovascular disease in general population and is frequently associated with the development of thoracic aortic aneurysm (TAA). There is no effective strategy to intervene with TAA progression due to an incomplete understanding of the pathogenesis. Insufficiency of NOTCH1 expression is highly related to BAV-TAA, but the underlying mechanism remains to be clarified. Methods: A comparative proteomics analysis was used to explore the biological differences between non-diseased and BAV-TAA aortic tissues. A microfluidics-based aorta smooth muscle-on-a-chip model was constructed to evaluate the effect of NOTCH1 deficiency on contractile phenotype and mitochondrial dynamics of human aortic smooth muscle cells (HAoSMCs). Results: Protein analyses of human aortic tissues showed the insufficient expression of NOTCH1 and impaired mitochondrial dynamics in BAV-TAA. HAoSMCs with NOTCH1-knockdown exhibited reduced contractile phenotype and were accompanied by attenuated mitochondrial fusion. Furthermore, we identified that mitochondrial fusion activators (leflunomide and teriflunomide) or mitochondrial fission inhibitor (Mdivi-1) partially rescued the disorders of mitochondrial dynamics in HAoSMCs derived from BAV-TAA patients. Conclusions: The aorta smooth muscle-on-a-chip model simulates the human pathophysiological parameters of aorta biomechanics and provides a platform for molecular mechanism studies of aortic disease and related drug screening. This aorta smooth muscle-on-a-chip model and human tissue proteomic analysis revealed that impaired mitochondrial dynamics could be a potential therapeutic target for BAV-TAA.Funding: National Key R&D Program of China, National Natural Science Foundation of China, Shanghai Municipal Science and Technology Major Project, Shanghai Science and Technology Commission, and Shanghai Municipal Education Commission.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mario Elkes ◽  
Martin Andonovski ◽  
Daislyn Vidal ◽  
Madison Farago ◽  
Ryan Modafferi ◽  
...  

Barth syndrome is a rare and incurable X-linked (male-specific) genetic disease that affects the protein tafazzin (Taz). Taz is an important enzyme responsible for synthesizing biologically relevant cardiolipin (for heart and skeletal muscle, cardiolipin rich in linoleic acid), a critical phospholipid of mitochondrial form and function. Mutations to Taz cause dysfunctional mitochondria, resulting in exercise intolerance due to skeletal muscle weakness. To date, there has been limited research on improving skeletal muscle function, with interventions focused on endurance and resistance exercise. Previous cell culture research has shown therapeutic potential for the addition of exogenous linoleic acid in improving Taz-deficient mitochondrial function but has not been examined in vivo. The purpose of this study was to examine the influence of supplemental dietary linoleic acid on skeletal muscle function in a rodent model of Barth syndrome, the inducible Taz knockdown (TazKD) mouse. One of the main findings was that TazKD soleus demonstrated an impaired contractile phenotype (slower force development and rates of relaxation) in vitro compared to their WT littermates. Interestingly, this impaired contractile phenotype seen in vitro did not translate to altered muscle function in vivo at the whole-body level. Also, supplemental linoleic acid attenuated, to some degree, in vitro impaired contractile phenotype in TazKD soleus, and these findings appear to be partially mediated by improvements in cardiolipin content and resulting mitochondrial supercomplex formation. Future research will further examine alternative mechanisms of dietary supplemental LA on improving skeletal muscle contractile dysfunction in TazKD mice.


Author(s):  
Chenfeng Mao ◽  
Zihan Ma ◽  
Yiting Jia ◽  
Weihao Li ◽  
Nan Xie ◽  
...  

Background: How the extracellular matrix (ECM) microenvironment modulates the contractile phenotype of vascular smooth muscle cells (VSMCs) and confers vascular homeostasis remains elusive. Methods: To explore the key ECM proteins in the maintenance of the contractile phenotype of VSMCs, we applied protein-protein interaction (PPI) network analysis to explore novel ECM proteins associated with the VSMC phenotype. By combining in vitro and in vivo genetic mice vascular injury model, we identified nidogen-2, a basement membrane (BM) glycoprotein, as a key ECM protein for maintenance of vascular smooth muscle cell identity. Results: We collected a VSMC phenotype-related gene dataset (VSMCPRG dataset) by using Gene Ontology (GO) annotation combined with a literature search. A computational analysis of protein-protein interactions between ECM protein genes and the genes from the VSMCPRG dataset revealed the candidate gene nidogen-2, a BM glycoprotein involved in regulation of the VSMC phenotype. Indeed, nidogen-2-deficient VSMCs exhibited loss of contractile phenotype in vitro , and compared with wild-type (WT) mice, nidogen-2 -/- mice showed aggravated post-wire injury neointima formation of carotid arteries. Further bioinformatics analysis, co-immunoprecipitation assays and luciferase assays revealed that nidogen-2 specifically interacted with Jagged1, a conventional Notch ligand. Nidogen-2 maintained the VSMC contractile phenotype via Jagged1-Notch3 signaling but not Notch1 or Notch2 signaling. Notably, nidogen-2 enhanced Jagged1 and Notch3 interaction and subsequent Notch3 activation. Reciprocally, Jagged1 and Notch3 interaction, signaling activation, and Jagged1-triggered VSMC differentiation were significantly repressed in nidogen-2-deficient VSMCs. In accordance, the suppressive effect of Jagged1 overexpression on neointima formation was attenuated in nidogen-2 -/- mice compared to wild-type mice. Conclusions: Nidogen-2 maintains the contractile phenotype of VSMCs through Jagged1-Notch3 signaling in vitro and in vivo . Nidogen-2 is required for Jagged1-Notch3 signaling.


2021 ◽  
Author(s):  
Abudupataer Mieradilijiang ◽  
Shichao Zhu ◽  
Shiqiang Yan ◽  
Kehua Xu ◽  
Jingjing Zhang ◽  
...  

Background: Bicuspid aortic valve (BAV) is the most common congenital cardiovascular disease in general population and is frequently associated with the development of thoracic aortic aneurysm (TAA). There is no effective strategy to intervene with TAA progression due to an incomplete understanding of the pathogenesis. Insufficiency of NOTCH1 expression is highly related to BAV-TAA, but the underlying mechanism remains to be clarified. <br />Methods: A comparative proteomics analysis was used to explore the biological differences between non-diseased and BAV-TAA aortic tissues. A microfluidics-based aorta-on-a-chip model was constructed to evaluate the effect of NOTCH1 deficiency on contractile phenotype and mitochondrial dynamics of human aortic smooth muscle cells (HAoSMCs). <br />Results: Protein analyses of human aortic tissues showed the insufficient expression of NOTCH1 and impaired mitochondrial dynamics in BAV-TAA. HAoSMCs with NOTCH1-knockdown exhibited reduced contractile phenotype and were accompanied by attenuated mitochondrial fusion. Furthermore, we identified that mitochondrial fusion activators (leflunomide and teriflunomide) or mitochondrial fission inhibitor (Mdivi-1) partially rescued the disorders of mitochondrial dynamics in HAoSMCs derived from BAV-TAA patients. <br />Conclusions: The aorta-on-a-chip model simulates the human pathophysiological parameters of aorta biomechanics and provides a platform for molecular mechanism studies of aortic disease and related drug screening. This aorta-on-a-chip model and human tissue proteomic analysis revealed that impaired mitochondrial dynamics could be a potential therapeutic target for BAV-TAA. <br /><br />Funding: National Key R&D Program of China, National Natural Science Foundation of China, Shanghai Municipal Science and Technology Major Project, Shanghai Science and Technology Commission, and Shanghai Municipal Education Commission.


Author(s):  
Zhe Wei ◽  
Hoshun Chong ◽  
Qixia Jiang ◽  
Yuhang Tang ◽  
Jinhong Xu ◽  
...  

Rationale: Targeting vascular smooth muscle cell (VSMC) phenotypic switching is a promising therapeutic approach for atherosclerosis (AS). Dysregulation of PGC1α, a key regulator of cellular energy metabolism, has been implicated in the pathogenesis of AS, yet its role in AS remains controversial. Objective: The current study aimed to determine whether and how PGC1α in VSMCs regulates AS progression. Methods and Results: We generated transgenic (Tg) rabbits with SMC-specific PGC1α overexpression and showed that these rabbits developed significantly less aortic AS than their non-Tg littermates after high-cholesterol diet (HCD) feeding, while total plasma cholesterol levels were similar. As indicated by the restored expression of VSMC differentiation marker genes, the HCD-induced phenotypic switching in the aortic media was largely reversed in Tg rabbits, accompanied by decreased levels of synthetic phenotype genes, proinflammatory cytokines, adhesion molecules, macrophage infiltration, matrix metalloproteinases (MMPs), reactive oxygen species (ROS) production and senescence. Ex vivo studies further showed that VSMC-specific PGC1α overexpression markedly suppressed the promotive effect of HCD feeding on the association of serum response factor (SRF) with ELK1, a ternary complex factor (TCF) that acts as a myogenic repressor in VSMCs, thereby preserving the VSMC contractile phenotype. Furthermore, knockdown of PGC1α remarkably increased extracellular signal-regulated kinase (ERK)1/2-ELK-1 signaling, which promoted phenotypic switching and proliferation of cultured rabbit VSMCs. In addition, we showed that PGC1α can regulate EGFR-ERK1/2 MAP kinase signaling via modulating PPARγ activity in RVSMCs. Finally, we showed that these beneficial results of SMC-specific PGC1α overexpression can be extrapolated from rabbits to human VSMCs and clinical settings. Conclusions: We demonstrated a critical role of PGC1α in maintaining the contractile phenotype of VSMCs and highlighted the therapeutic potential of PGC1α for AS.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0248256
Author(s):  
Seth H. Weinberg ◽  
Navpreet Saini ◽  
Christopher A. Lemmon

Assembly of the extracellular matrix protein fibronectin (FN) into insoluble, viscoelastic fibrils is a critical step during embryonic development and wound healing; misregulation of FN fibril assembly has been implicated in many diseases, including fibrotic diseases and cancer. We have previously developed a computational model of FN fibril assembly that recapitulates the morphometry and mechanics of cell-derived FN fibrils. Here we use this model to probe two important questions: how is FN fibril formation affected by the contractile phenotype of the cell, and how is FN fibril formation affected by the stiffness of the surrounding tissue? We show that FN fibril formation depends strongly on the contractile phenotype of the cell, but only weakly on in vitro substrate stiffness, which is an analog for in vivo tissue stiffness. These results are consistent with previous experimental data and provide a better insight into conditions that promote FN fibril assembly. We have also investigated two distinct phenotypes of FN fibrils that we have previously identified; we show that the ratio of the two phenotypes depends on both substrate stiffness and contractile phenotype, with intermediate contractility and high substrate stiffness creating an optimal condition for stably stretched fibrils. Finally, we have investigated how re-stretch of a fibril affects cellular response. We probed how the contractile phenotype of the re-stretching cell affects the mechanics of the fibril; results indicate that the number of myosin motors only weakly affects the cellular response, but increasing actin velocity results in a decrease in the apparent stiffness of the fibril and a decrease in the stably-applied force to the fibril. Taken together, these results give novel insights into the combinatorial effects of substrate stiffness and cell contractility on FN fibril assembly.


2021 ◽  
Vol 22 (8) ◽  
pp. 4114
Author(s):  
Maria Giovanna Lupo ◽  
Silvia Marchianò ◽  
Maria Pia Adorni ◽  
Francesca Zimetti ◽  
Massimiliano Ruscica ◽  
...  

Human atherosclerotic plaque contains smooth muscle cells (SMCs) negative for the contractile phenotype (α-smooth muscle actin) but positive for proprotein convertase subtilisin/kexin type 9 (PCSK9). Thus, we generated rat SMCs which overexpressed human PCSK9 (SMCsPCSK9) with the aim of investigating the role of PCSK9 in the phenotype of SMCs. PCSK9 overexpression in SMCsPCSK9 led to a significant downregulation of the low-density lipoprotein receptor (Ldlr) as well as transgelin (Sm22α), a marker of the contractile phenotype. The cell proliferation rate of SMCsPCSK9 was significantly faster than that of the control SMCs (SMCspuro). Interestingly, overexpression of PCSK9 did not impact the migratory capacity of SMCs in response to 10% FCS, as determined by Boyden’s chamber assay. Expression and activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Hmgcr) was significantly increased in the presence of PCSK9, both in SMCPCSK9 and after treatment with recombinant PCSK9. The transcriptional activity of sterol regulatory element-binding protein (SREBP) was also increased in the presence of PSCK9, suggesting a direct role of PCSK9 in the control of SRE-responsive genes, like HMGCR. We also observed that cholesterol biosynthesis is elevated in SMCPCSK9, potentially explaining the increased proliferation observed in these cells. Finally, concentration-dependent experiments with simvastatin demonstrated that SMCsPCSK9 were partially resistant to the antiproliferative and antimigratory effect of this drug. Taken together, these data further support a direct role of PCSK9 in proliferation, migration, and phenotypic changes in SMCs—pivotal features of atherosclerotic plaque development. We also provide new evidence on the role of PCSK9 in the pharmacological response to statins—gold standard lipid-lowering drugs with pleiotropic action.


Author(s):  
Kanchan Phadwal ◽  
Christina Vrahnas ◽  
Ian G. Ganley ◽  
Vicky E. MacRae

Mitochondria are crucial bioenergetics powerhouses and biosynthetic hubs within cells, which can generate and sequester toxic reactive oxygen species (ROS) in response to oxidative stress. Oxidative stress-stimulated ROS production results in ATP depletion and the opening of mitochondrial permeability transition pores, leading to mitochondria dysfunction and cellular apoptosis. Mitochondrial loss of function is also a key driver in the acquisition of a senescence-associated secretory phenotype that drives senescent cells into a pro-inflammatory state. Maintaining mitochondrial homeostasis is crucial for retaining the contractile phenotype of the vascular smooth muscle cells (VSMCs), the most prominent cells of the vasculature. Loss of this contractile phenotype is associated with the loss of mitochondrial function and a metabolic shift to glycolysis. Emerging evidence suggests that mitochondrial dysfunction may play a direct role in vascular calcification and the underlying pathologies including (1) impairment of mitochondrial function by mineral dysregulation i.e., calcium and phosphate overload in patients with end-stage renal disease and (2) presence of increased ROS in patients with calcific aortic valve disease, atherosclerosis, type-II diabetes and chronic kidney disease. In this review, we discuss the cause and consequence of mitochondrial dysfunction in vascular calcification and underlying pathologies; the role of autophagy and mitophagy pathways in preventing mitochondrial dysfunction during vascular calcification and finally we discuss mitochondrial ROS, DRP1, and HIF-1 as potential novel markers and therapeutic targets for maintaining mitochondrial homeostasis in vascular calcification.


Sign in / Sign up

Export Citation Format

Share Document