scholarly journals Mammalian Homologue of the Caenorhabditis elegans UNC-76 Protein Involved in Axonal Outgrowth Is a Protein Kinase C ζ–interacting Protein

1999 ◽  
Vol 144 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Shun'ichi Kuroda ◽  
Noritaka Nakagawa ◽  
Chiharu Tokunaga ◽  
Kenji Tatematsu ◽  
Katsuyuki Tanizawa

By the yeast two-hybrid screening of a rat brain cDNA library with the regulatory domain of protein kinase C ζ (PKCζ) as a bait, we have cloned a gene coding for a novel PKCζ-interacting protein homologous to the Caenorhabditis elegans UNC-76 protein involved in axonal outgrowth and fasciculation. The protein designated FEZ1 (fasciculation and elongation protein zeta-1) consisting of 393 amino acid residues shows a high Asp/Glu content and contains several regions predicted to form amphipathic helices. Northern blot analysis has revealed that FEZ1 mRNA is abundantly expressed in adult rat brain and throughout the developmental stages of mouse embryo. By the yeast two-hybrid assay with various deletion mutants of PKC, FEZ1 was shown to interact with the NH2-terminal variable region (V1) of PKCζ and weakly with that of PKCε. In the COS-7 cells coexpressing FEZ1 and PKCζ, FEZ1 was present mainly in the plasma membrane, associating with PKCζ and being phosphorylated. These results indicate that FEZ1 is a novel substrate of PKCζ. When the constitutively active mutant of PKCζ was used, FEZ1 was found in the cytoplasm of COS-7 cells. Upon treatment of the cells with a PKC inhibitor, staurosporin, FEZ1 was translocated from the cytoplasm to the plasma membrane, suggesting that the cytoplasmic translocation of FEZ1 is directly regulated by the PKCζ activity. Although expression of FEZ1 alone had no effect on PC12 cells, coexpression of FEZ1 and constitutively active PKCζ stimulated the neuronal differentiation of PC12 cells. Combined with the recent finding that a human FEZ1 protein is able to complement the function of UNC-76 necessary for normal axonal bundling and elongation within axon bundles in the nematode, these results suggest that FEZ1 plays a crucial role in the axon guidance machinery in mammals by interacting with PKCζ.

1995 ◽  
Vol 128 (3) ◽  
pp. 263-271 ◽  
Author(s):  
J Staudinger ◽  
J Zhou ◽  
R Burgess ◽  
S J Elledge ◽  
E N Olson

Protein kinase C (PKC) plays a central role in the control of proliferation and differentiation of a wide range of cell types by mediating the signal transduction response to hormones and growth factors. Upon activation by diacylglycerol, PKC translocates to different subcellular sites where it phosphorylates numerous proteins, most of which are unidentified. We used the yeast two-hybrid system to identify proteins that interact with activated PKC alpha. Using the catalytic region of PKC fused to the DNA binding domain of yeast GAL4 as "bait" to screen a mouse T cell cDNA library in which cDNA was fused to the GAL4 activation domain, we cloned several novel proteins that interact with C-kinase (PICKs). One of these proteins, designated PICK1, interacts specifically with the catalytic domain of PKC and is an efficient substrate for phosphorylation by PKC in vitro and in vivo. PICK1 is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK1 and other PICKs may play important roles in mediating the actions of PKC.


2007 ◽  
Vol 19 (4) ◽  
pp. 723-730 ◽  
Author(s):  
Seena K. Ajit ◽  
Suneela Ramineni ◽  
Wade Edris ◽  
Rachel A. Hunt ◽  
Wah-Tung Hum ◽  
...  

FEBS Letters ◽  
1989 ◽  
Vol 249 (2) ◽  
pp. 324-328 ◽  
Author(s):  
Lázló Buday ◽  
György Mészáros ◽  
Gyöngyi Farkas ◽  
János Seprődi ◽  
Ferenc Antoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document