scholarly journals A Role for Ubiquitination in Mitochondrial Inheritance in Saccharomyces cerevisiae

1999 ◽  
Vol 145 (6) ◽  
pp. 1199-1208 ◽  
Author(s):  
Harold A. Fisk ◽  
Michael P. Yaffe

The smm1 mutation suppresses defects in mitochondrial distribution and morphology caused by the mdm1-252 mutation in the yeast Saccharomyces cerevisiae. Cells harboring only the smm1 mutation themselves display temperature-sensitive growth and aberrant mitochondrial inheritance and morphology at the nonpermissive temperature. smm1 maps to RSP5, a gene encoding an essential ubiquitin-protein ligase. The smm1 defects are suppressed by overexpression of wild-type ubiquitin but not by overexpression of mutant ubiquitin in which lysine-63 is replaced by arginine. Furthermore, overexpression of this mutant ubiquitin perturbs mitochondrial distribution and morphology in wild-type cells. Site-directed mutagenesis revealed that the ubiquitin ligase activity of Rsp5p is essential for its function in mitochondrial inheritance. A second mutation, smm2, which also suppressed mdm1-252 defects, but did not cause aberrant mitochondrial distribution and morphology, mapped to BUL1, encoding a protein interacting with Rsp5p. These results indicate that protein ubiquitination mediated by Rsp5p plays an essential role in mitochondrial inheritance, and reveal a novel function for protein ubiquitination.

2020 ◽  
Vol 98 (5) ◽  
pp. 624-630 ◽  
Author(s):  
Yanrui Zhu ◽  
Matthew D. Berg ◽  
Phoebe Yang ◽  
Raphaël Loll-Krippleber ◽  
Grant W. Brown ◽  
...  

Mistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNASerUGG, G26A, which mistranslates proline codons by inserting serine, and eco1-1, a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion. The suppression was partial, with a tRNA that inserts alanine at proline codons and not apparent for a tRNA that inserts serine at arginine codons. Sequencing of the eco1-1 allele revealed a mutation that would convert the highly conserved serine 213 within β7 of the GCN5-related N-acetyltransferase core to proline. Mutation of P213 in eco1-1 back to the wild-type serine restored the function of the enzyme at elevated temperatures. Our results indicate the utility of mistranslating tRNA variants to identify functionally relevant mutations and identify eco1 as a reporter for mistranslation. We propose that mistranslation could be used as a tool to treat genetic disease.


1990 ◽  
Vol 110 (1) ◽  
pp. 105-114 ◽  
Author(s):  
B K Haarer ◽  
S H Lillie ◽  
A E Adams ◽  
V Magdolen ◽  
W Bandlow ◽  
...  

We have isolated profilin from yeast (Saccharomyces cerevisiae) and have microsequenced a portion of the protein to confirm its identity; the region microsequenced agrees with the predicted amino acid sequence from a profilin gene recently isolated from S. cerevisiae (Magdolen, V., U. Oechsner, G. Müller, and W. Bandlow. 1988. Mol. Cell. Biol. 8:5108-5115). Yeast profilin resembles profilins from other organisms in molecular mass and in the ability to bind to polyproline, retard the rate of actin polymerization, and inhibit hydrolysis of ATP by monomeric actin. Using strains that carry disruptions or deletions of the profilin gene, we have found that, under appropriate conditions, cells can survive without detectable profilin. Such cells grow slowly, are temperature sensitive, lose the normal ellipsoidal shape of yeast cells, often become multinucleate, and generally grow much larger than wild-type cells. In addition, these cells exhibit delocalized deposition of cell wall chitin and have dramatically altered actin distributions.


1991 ◽  
Vol 11 (5) ◽  
pp. 2583-2592 ◽  
Author(s):  
C C Dykstra ◽  
K Kitada ◽  
A B Clark ◽  
R K Hamatake ◽  
A Sugino

The gene encoding the 180-kDa DNA strand transfer protein beta from the yeast Saccharomyces cerevisiae was identified and sequenced. This gene, DST2 (DNA strand transferase 2), was located on chromosome VII. dst2 gene disruption mutants exhibited temperature-sensitive sporulation and a 50% longer generation time during vegetative growth than did the wild type. Spontaneous mitotic recombination in the mutants was reduced severalfold for both intrachromosomal recombination and intragenic gene conversion. The mutants also had reduced levels of the intragenic recombination that is induced during meiosis. Meiotic recombinants were, however, somewhat unstable in the mutants, with a decrease in recombinants and survival upon prolonged incubation in sporulation media. spo13 or spo13 rad50 mutations did not relieve the sporulation defect of dst2 mutations. A dst1 dst2 double mutant has the same phenotype as a dst2 single mutant. All phenotypes associated with the dst2 mutations could be complemented by a plasmid containing DST2.


2020 ◽  
Author(s):  
Yanrui Zhu ◽  
Matthew D. Berg ◽  
Phoebe Yang ◽  
Raphaël Loll-Krippleber ◽  
Grant W. Brown ◽  
...  

ABSTRACTMistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNASerUGG, G26A, which mistranslates proline codons by inserting serine, and eco1-1, a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion. The suppression was partial with a tRNA that inserts alanine at proline codons and not apparent for a tRNA that inserts serine at arginine codons. Sequencing of the eco1-1 allele revealed a mutation that would convert the highly conserved serine 213 within β7 of the GCN5-related N-acetyltransferase core to proline. Mutation of P213 in eco1-1 back to the wild-type serine restored function of the enzyme at elevated temperature. Our results indicate the utility of mistranslating tRNA variants to identify functionally relevant mutations and identify eco1 as a reporter for mistranslation. We propose that mistranslation could be used as a tool to treat genetic disease.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1982 ◽  
Vol 2 (9) ◽  
pp. 1052-1063
Author(s):  
J R Shuster

Temperature-sensitive mutants which arrest in the G1 phase of the cell cycle have been described for the yeast Saccharomyces cerevisiae. One class of these mutants (carrying cdc28, cdc36, cdc37, or cdc39) forms a shmoo morphology at restrictive temperature, characteristic of mating pheromone-arrested wild-type cells. Therefore, one hypothesis to explain the control of cell division by mating factors states that mating pheromones arrest wild-type cells by inactivating one or more of these CDC gene products. A class of mutants (carrying ste4, ste5, ste7, ste11, or ste12) which is insensitive to mating pheromone and sterile has also been described. One possible function of the STE gene products is the inactivation of the CDC gene products in the presence of a mating pheromone. A model incorporating these two hypotheses predicts that such STE gene products will not be required for mating in strains carrying an appropriate cdc lesion. This prediction was tested by assaying the mating abilities of double mutants for all of the pairwise combinations of cdc and ste mutations. Lesions in either cdc36 or cdc39 suppressed the mating defect due to ste4 and ste5. Allele specificity was observed in the suppression of both ste4 and ste5. The results indicate that the CDC36, CDC39, STE4, and STE5 gene products interact functionally or physically or both in the regulation of cell division mediated by the presence or absence of mating pheromones. The cdc36 and cdc39 mutations did not suppress ste7, ste11, or ste12. Lesions in cdc28 or cdc37 did not suppress any of the ste mutations. Other models of CDC and STE gene action which predicted that some of the cdc and ste mutations would be alleles of the same locus were tested. None of the cdc mutations was allelic to the ste mutations and, therefore, these models were eliminated.


1991 ◽  
Vol 11 (5) ◽  
pp. 2583-2592 ◽  
Author(s):  
C C Dykstra ◽  
K Kitada ◽  
A B Clark ◽  
R K Hamatake ◽  
A Sugino

The gene encoding the 180-kDa DNA strand transfer protein beta from the yeast Saccharomyces cerevisiae was identified and sequenced. This gene, DST2 (DNA strand transferase 2), was located on chromosome VII. dst2 gene disruption mutants exhibited temperature-sensitive sporulation and a 50% longer generation time during vegetative growth than did the wild type. Spontaneous mitotic recombination in the mutants was reduced severalfold for both intrachromosomal recombination and intragenic gene conversion. The mutants also had reduced levels of the intragenic recombination that is induced during meiosis. Meiotic recombinants were, however, somewhat unstable in the mutants, with a decrease in recombinants and survival upon prolonged incubation in sporulation media. spo13 or spo13 rad50 mutations did not relieve the sporulation defect of dst2 mutations. A dst1 dst2 double mutant has the same phenotype as a dst2 single mutant. All phenotypes associated with the dst2 mutations could be complemented by a plasmid containing DST2.


1996 ◽  
Vol 16 (7) ◽  
pp. 3255-3263 ◽  
Author(s):  
H Yashiroda ◽  
T Oguchi ◽  
Y Yasuda ◽  
A Toh-E ◽  
Y Kikuchi

We characterized a temperature-sensitive mutant of Saccharomyces cerevisiae in which a mini-chromosome was unstable at a high temperature and cloned a new gene which encodes a basic and hydrophilic protein (110 kDa). The disruption of this gene caused the same temperature-sensitive growth as the original mutation. By using the two-hybrid system, we further isolated RSP5 (reverses Spt- phenotype), which encodes a hect (homologous to E6-AP C terminus) domain, as a gene encoding a ubiquitin ligase. Thus, we named our gene BUL1 (for a protein that binds to the ubiquitin ligase). BUL1 seems to be involved in the ubiquitination pathway, since a high dose of UBI1, encoding a ubiquitin, partially suppressed the temperature sensitivity of the bul1 disruptant as well as that of a rsp5 mutant. Coexpression of RSP5 and BUL1 on a multicopy plasmid was toxic for mitotic growth of the wild-type cells. Pulse-chase experiments revealed that Bul1 in the wild-type cells remained stable, while the bands of Bul1 in the rsp5 cells were hardly detected. Since the steady-state levels of the protein were the same in the two strains as determined by immunoblotting analysis, Bul1 might be easily degraded during immunoprecipitation in the absence of intact Rsp5. Furthermore, both Bul1 and Rsp5 appeared to be associated with large complexes which were separated through a sucrose gradient centrifugation, and Rsp5 was coimmunoprecipitated with Bul1. We discuss the possibility that Bul1 functions together with Rsp5 in protein ubiquitination.


1991 ◽  
Vol 11 (6) ◽  
pp. 3105-3114 ◽  
Author(s):  
J Schnier ◽  
H G Schwelberger ◽  
Z Smit-McBride ◽  
H A Kang ◽  
J W Hershey

Translation intitiation factor eIF-5A (previously named eIF-4D) is a highly conserved protein that promotes formation of the first peptide bond. One of its lysine residues is modified by spermidine to form hypusine, a posttranslational modification unique to eIF-5A. To elucidate the function of eIF-5A and determine the role of its hypusine modification, the cDNA encoding human eIF-5A was used as a probe to identify and clone the corresponding genes from the yeast Saccharomyces cerevisiae. Two genes named TIF51A and TIF51B were cloned and sequenced. The two yeast proteins are closely related, sharing 90% sequence identity, and each is ca. 63% identical to the human protein. The purified protein expressed from the TIF51A gene substitutes for HeLa eIF-5A in the mammalian methionyl-puromycin synthesis assay. Strains lacking the A form of eIF-5A, constructed by disruption of TIF51A with LEU2, grow slowly, whereas strains lacking the B form, in which HIS3 was used to disrupt TIF51B, show no growth rate phenotype. However, strains with both TIF51A and TIF51B disrupted are not viable, indicating that eIF-5a is essential for cell growth in yeast cells. Northern (RNA) blot analysis shows two mRNA species, a larger mRNA (0.9 kb) transcribed from TIF51A and a smaller mRNA (0.8 kb) encoded by TIF51B. Under the aerobic growth conditions of this study, the 0.8-kb TIF51B transcript is not detected in the wild-type strain and is expressed only when TIF51A is disrupted. The TIF51A gene was altered by site-directed mutagenesis at the site of hypusination by changing the Lys codon to that for Arg, thereby producing a stable protein that retains the positive charge but is not modified to the hypusine derivative. The plasmid shuffle technique was used to replace the wild-type gene with the mutant form, resulting in failure of the yeast cells to grow. This result indicates that hypusine very likely is required for the vital in vivo function of eIF-5A and suggests a precise, essential role for the polyamine spermidine in cell metabolism.


1999 ◽  
Vol 144 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Kelly A. Shepard ◽  
Michael P. Yaffe

The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37°C, while loss of the mitochondrial genome occurred after 4–24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.


Sign in / Sign up

Export Citation Format

Share Document