scholarly journals The discrepancy between presenilin subcellular localization and γ-secretase processing of amyloid precursor protein

2001 ◽  
Vol 154 (4) ◽  
pp. 731-740 ◽  
Author(s):  
Philippe Cupers ◽  
Mustapha Bentahir ◽  
Katleen Craessaerts ◽  
Isabelle Orlans ◽  
Hugo Vanderstichele ◽  
...  

We investigated the relationship between PS1 and γ-secretase processing of amyloid precursor protein (APP) in primary cultures of neurons. Increasing the amount of APP at the cell surface or towards endosomes did not significantly affect PS1-dependent γ-secretase cleavage, although little PS1 is present in those subcellular compartments. In contrast, almost no γ-secretase processing was observed when holo-APP or APP-C99, a direct substrate for γ-secretase, were specifically retained in the endoplasmic reticulum (ER) by a double lysine retention motif. Nevertheless, APP-C99-dilysine (KK) colocalized with PS1 in the ER. In contrast, APP-C99 did not colocalize with PS1, but was efficiently processed by PS1-dependent γ-secretase. APP-C99 resides in a compartment that is negative for ER, intermediate compartment, and Golgi marker proteins. We conclude that γ-secretase cleavage of APP-C99 occurs in a specialized subcellular compartment where little or no PS1 is detected. This suggests that at least one other factor than PS1, located downstream of the ER, is required for the γ-cleavage of APP-C99. In agreement, we found that intracellular γ-secretase processing of APP-C99-KK both at the γ40 and the γ42 site could be restored partially after brefeldin A treatment. Our data confirm the “spatial paradox” and raise several questions regarding the PS1 is γ-secretase hypothesis.

2012 ◽  
Vol 23 (12) ◽  
pp. 2339-2351 ◽  
Author(s):  
Yogikala Prabhu ◽  
Patricia V. Burgos ◽  
Christina Schindler ◽  
Ginny G. Farías ◽  
Javier G. Magadán ◽  
...  

The β-site amyloid precursor protein (APP)–cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease that catalyzes the proteolytic processing of APP and other plasma membrane protein precursors. BACE1 cycles between the trans-Golgi network (TGN), the plasma membrane, and endosomes by virtue of signals contained within its cytosolic C-terminal domain. One of these signals is the DXXLL-motif sequence DISLL, which controls transport between the TGN and endosomes via interaction with GGA proteins. Here we show that the DISLL sequence is embedded within a longer [DE]XXXL[LI]-motif sequence, DDISLL, which mediates internalization from the plasma membrane by interaction with the clathrin-associated, heterotetrameric adaptor protein 2 (AP-2) complex. Mutation of this signal or knockdown of either AP-2 or clathrin decreases endosomal localization and increases plasma membrane localization of BACE1. Remarkably, internalization-defective BACE1 is able to cleave an APP mutant that itself cannot be delivered to endosomes. The drug brefeldin A reversibly prevents BACE1-catalyzed APP cleavage, ruling out that this reaction occurs in the endoplasmic reticulum (ER) or ER–Golgi intermediate compartment. Taken together, these observations support the notion that BACE1 is capable of cleaving APP in late compartments of the secretory pathway.


1997 ◽  
Vol 138 (3) ◽  
pp. 671-680 ◽  
Author(s):  
Abraham S.C. Chyung ◽  
Barry D. Greenberg ◽  
David G. Cook ◽  
Robert W. Doms ◽  
Virginia M.-Y. Lee

Previous studies have demonstrated that NT2N neurons derived from a human embryonal carcinoma cell line (NT2) constitutively process the endogenous wild-type β-amyloid precursor protein (APP) to amyloid β peptide in an intracellular compartment. These studies indicate that other proteolytic fragments generated by intracellular processing must also be present in these cells. Here we show that the NH2-terminal fragment of APP generated by β-secretase cleavage (APPβ) is indeed produced from the endogenous full length APP (APPFL). Pulse–chase studies demonstrated a precursor–product relationship between APPFL and APPβ as well as intracellular and secreted APPβ fragments. In addition, trypsin digestion of intact NT2N cells at 4°C did not abolish APPβ recovered from the cell lysates. Furthermore, the production of intracellular APPβ from wild-type APP appears to be a unique characteristic of postmitotic neurons, since intracellular APPβ was not detected in several non-neuronal cell lines. Significantly, production of APPβ occurred even when APP was retained in the ER/ intermediate compartment by inhibition with brefeldin A, incubation at 15°C, or by expression of exogenous APP bearing the dilysine ER retrieval motif.


1998 ◽  
Vol 9 (12) ◽  
pp. 3561-3578 ◽  
Author(s):  
Harri Palokangas ◽  
Ming Ying ◽  
Kalervo Väänänen ◽  
Jaakko Saraste

The effect of the vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1) on the localization of pre-Golgi intermediate compartment (IC) and Golgi marker proteins was used to study the role of acidification in the function of early secretory compartments. Baf A1 inhibited both brefeldin A- and nocodazole-induced retrograde transport of Golgi proteins to the endoplasmic reticulum (ER), whereas anterograde ER-to-Golgi transport remained largely unaffected. Furthermore, p58/ERGIC-53, which normally cycles between the ER, IC, and cis-Golgi, was arrested in pre-Golgi tubules and vacuoles, and the number of p58-positive ∼80-nm Golgi (coatomer protein I) vesicles was reduced, suggesting that the drug inhibits the retrieval of the protein from post-ER compartments. In parallel, redistribution of β-coatomer protein from the Golgi to peripheral pre-Golgi structures took place. The small GTPase rab1p was detected in short pre-Golgi tubules in control cells and was efficiently recruited to the tubules accumulating in the presence of Baf A1. In contrast, these tubules showed no enrichment of newly synthesized, anterogradely transported proteins, indicating that they participate in retrograde transport. These results suggest that the pre-Golgi structures contain an active H+-ATPase that regulates retrograde transport at the ER–Golgi boundary. Interestingly, although Baf A1 had distinct effects on peripheral pre-Golgi structures, only more central, p58-containing elements accumulated detectable amounts of 3-(2,4-dinitroanilino)-3′-amino-N-methyldipropylamine (DAMP), a marker for acidic compartments, raising the possibility that the lumenal pH of the pre-Golgi structures gradually changes in parallel with their translocation to the Golgi region.


2015 ◽  
Vol 290 (19) ◽  
pp. 12048-12057 ◽  
Author(s):  
Chao Liu ◽  
Francis Chee Kuan Tan ◽  
Zhi-Cheng Xiao ◽  
Gavin S. Dawe

2003 ◽  
Vol 87 (1) ◽  
pp. 248-256 ◽  
Author(s):  
Donat Kögel ◽  
Robert Schomburg ◽  
Tina Schürmann ◽  
Claus Reimertz ◽  
Hans-Georg König ◽  
...  

2009 ◽  
Vol 418 (3) ◽  
pp. 643-650 ◽  
Author(s):  
Ascensión Cuesta ◽  
Alberto Zambrano ◽  
María Royo ◽  
Angel Pascual

The expression of the APP (amyloid precursor protein), which plays a key role in the development of AD (Alzheimer's disease), is regulated by a variety of cellular mediators in a cell-dependent manner. In this study, we present evidence that p53 regulates the expression of the APP gene in neuroblastoma cells. Transient expression of ectopic p53, activation of endogenous p53 by the DNA-damaging drug camptothecin or Mdm2 (murine double minute 2) depletion decreases the intracellular levels of APP in murine N2aβ neuroblastoma cells. This effect was also observed in primary cultures of rat neurons as well as in SH-SY5Y cells, a human neuroblastoma cell line. Transient transfection studies using plasmids that contain progressive deletions of the 5′ region of the gene demonstrate that p53 represses APP promoter activity through a mechanism that is mediated by DNA sequences located downstream of the transcription start site (+55/+101). Accordingly, expression of a dominant-negative p53 mutant significantly increases the transcriptional activity of the APP promoter. In addition, results obtained in gel mobility-shift assays show that p53 does not bind to the +55/+101 APP region, although it reduces binding of the transcription factor Sp1 (stimulating protein 1). Reduction of Sp1 binding after activation of p53 with camptothecin was also observed in chromatin immunoprecipitation assays. Altogether, our results strongly suggest a mechanism by which p53 precludes binding of Sp1 to DNA, and therefore the stimulation of the APP promoter by this transcription factor.


Traffic ◽  
2006 ◽  
Vol 7 (4) ◽  
pp. 408-415 ◽  
Author(s):  
Christoph Kaether ◽  
Stephanie Schmitt ◽  
Michael Willem ◽  
Christian Haass

2002 ◽  
Vol 277 (39) ◽  
pp. 36415-36424 ◽  
Author(s):  
Paul M. Mathews ◽  
Ying Jiang ◽  
Stephen D. Schmidt ◽  
Olivera M. Grbovic ◽  
Marc Mercken ◽  
...  

1992 ◽  
Vol 3 (8) ◽  
pp. 851-863 ◽  
Author(s):  
A Taraboulos ◽  
A J Raeber ◽  
D R Borchelt ◽  
D Serban ◽  
S B Prusiner

Scrapie prions are composed largely, if not entirely, of the scrapie prion protein (PrPSc) that is encoded by a chromosomal gene. Scrapie-infected mouse neuroblastoma (ScN2a) and hamster brain (ScHaB) cells synthesize PrPSc from the normal PrP isoform (PrPC) or a precursor through a posttranslational process. In pulse-chase radiolabeling experiments, we found that presence of brefeldin A (BFA) during both the pulse and the chase periods prevented the synthesis of PrPSc. Removal of BFA after the chase permitted synthesis of PrPSc to resume. BFA also blocked the export of nascent PrPC to the cell surface but did not alter the distribution of intracellular deposits of PrPSc. Under the same conditions, BFA caused the redistribution of the Golgi marker MG160 into the endoplasmic reticulum (ER). Using monensin as an inhibitor of mid-Golgi glycosylation, we determined that PrP traverses the mid-Golgi stack before acquiring protease resistance. About 1 h after the formation of PrPSc, its N-terminus was removed by a proteolytic process that was inhibited by ammonium chloride, chloroquine, and monensin, arguing that this is a lysosomal event. These results suggest that the ER is not competent for the synthesis of PrPSc and that the synthesis of PrPSc occurs during the transit of PrP between the mid-Golgi stack and lysosomes. Presumably, the endocytic pathway features in the synthesis of PrPSc.


Sign in / Sign up

Export Citation Format

Share Document