scholarly journals Smitin, a novel smooth muscle titin–like protein, interacts with myosin filaments in vivo and in vitro

2002 ◽  
Vol 156 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Kyoungtae Kim ◽  
Thomas C.S. Keller

Smooth muscle cells use an actin–myosin II-based contractile apparatus to produce force for a variety of physiological functions, including blood pressure regulation and gut peristalsis. The organization of the smooth muscle contractile apparatus resembles that of striated skeletal and cardiac muscle, but remains much more poorly understood. We have found that avian vascular and visceral smooth muscles contain a novel, megadalton protein, smitin, that is similar to striated muscle titin in molecular morphology, localization in a contractile apparatus, and ability to interact with myosin filaments. Smitin, like titin, is a long fibrous molecule with a globular domain on one end. Specific reactivities of an anti-smitin polyclonal antibody and an anti-titin monoclonal antibody suggest that smitin and titin are distinct proteins rather than differentially spliced isoforms encoded by the same gene. Smitin immunofluorescently colocalizes with myosin in chicken gizzard smooth muscle, and interacts with two configurations of smooth muscle myosin filaments in vitro. In physiological ionic strength conditions, smitin and smooth muscle myosin coassemble into irregular aggregates containing large sidepolar myosin filaments. In low ionic strength conditions, smitin and smooth muscle myosin form highly ordered structures containing linear and polygonal end-to-end and side-by-side arrays of small bipolar myosin filaments. We have used immunogold localization and sucrose density gradient cosedimentation analyses to confirm association of smitin with both the sidepolar and bipolar smooth muscle myosin filaments. These findings suggest that the titin-like protein smitin may play a central role in organizing myosin filaments in the contractile apparatus and perhaps in other structures in smooth muscle cells.

1997 ◽  
Vol 273 (4) ◽  
pp. C1259-C1266 ◽  
Author(s):  
Daniel P. Meer ◽  
Thomas J. Eddinger

The functional significance of the variable expression of the smooth muscle myosin heavy chain (SM-MHC) tail isoforms, SM1 and SM2, was examined at the mRNA level (which correlates with the protein level) in individual permeabilized rabbit arterial smooth muscle cells (SMCs). The length of untethered single permeabilized SMCs was monitored during unloaded shortening in response to increased Ca2+ (pCa 6.0), histamine (1 μM), and phenylephrine (1 μM). Subsequent to contraction, the relative expression of SM1 and SM2 mRNAs from the same individual SMCs was determined by reverse transcription-polymerase chain reaction amplification and densitometric analysis. Correlational analyses between the SM2-to-SM1 ratio and unloaded shortening in saponin- and α-toxin-permeabilized SMCs ( n = 28) reveal no significant relationship between the SM-MHC tail isoform ratio and unloaded shortening velocity. The best correlations between SM2/SM1 and the contraction characteristics of untethered vascular SMCs were with the minimum length attained following contraction ( n = 20 and r = 0.72 for α-toxin, n = 8 and r = 0.78 for saponin). These results suggest that the primary effect of variable expression of the SM1 and SM2 SM-MHC tail isoforms is on the cell final length and not on shortening velocity.


1985 ◽  
Vol 101 (5) ◽  
pp. 1897-1902 ◽  
Author(s):  
J R Sellers ◽  
J A Spudich ◽  
M P Sheetz

In smooth muscles there is no organized sarcomere structure wherein the relative movement of myosin filaments and actin filaments has been documented during contraction. Using the recently developed in vitro assay for myosin-coated bead movement (Sheetz, M.P., and J.A. Spudich, 1983, Nature (Lond.)., 303:31-35), we were able to quantitate the rate of movement of both phosphorylated and unphosphorylated smooth muscle myosin on ordered actin filaments derived from the giant alga, Nitella. We found that movement of turkey gizzard smooth muscle myosin on actin filaments depended upon the phosphorylation of the 20-kD myosin light chains. About 95% of the beads coated with phosphorylated myosin moved at velocities between 0.15 and 0.4 micron/s, depending upon the preparation. With unphosphorylated myosin, only 3% of the beads moved and then at a velocity of only approximately 0.01-0.04 micron/s. The effects of phosphorylation were fully reversible after dephosphorylation with a phosphatase prepared from smooth muscle. Analysis of the velocity of movement as a function of phosphorylation level indicated that phosphorylation of both heads of a myosin molecule was required for movement and that unphosphorylated myosin appears to decrease the rate of movement of phosphorylated myosin. Mixing of phosphorylated smooth muscle myosin with skeletal muscle myosin which moves at 2 microns/s resulted in a decreased rate of bead movement, suggesting that the more slowly cycling smooth muscle myosin is primarily determining the velocity of movement in such mixtures.


2000 ◽  
Vol 148 (4) ◽  
pp. 653-664 ◽  
Author(s):  
Tsuyoshi Okagaki ◽  
Akio Nakamura ◽  
Tomohiko Suzuki ◽  
Kazuhiro Ohmi ◽  
Kazuhiro Kohama

Smooth muscle myosin in the dephosphorylated state does not form filaments in vitro. However, thick filaments, which are composed of myosin and myosin-binding protein(s), persist in smooth muscle cells, even if myosin is subjected to the phosphorylation– dephosphorylation cycle. The characterization of telokin as a myosin-assembling protein successfully explained the discrepancy. However, smooth muscle cells that are devoid of telokin have been observed. We expected to find another ubiquitous protein with a similar role, and attempted to purify it from chicken gizzard. The 38k protein bound to both phosphorylated and dephosphorylated myosin to a similar extent. The effect of the myosin-binding activity was to assemble dephosphorylated myosin into filaments, although it had no effect on the phosphorylated myosin. The 38k protein bound to myosin with both COOH-terminal 20 and NH2-terminal 28 residues of the 38k protein being essential for myosin binding. The amino acid sequence of the 38k protein was not homologous to telokin, but to human p32, which was originally found in nuclei as a subunit of pre-mRNA splicing factor-2. Western blotting showed that the protein was expressed in various smooth muscles. Immunofluorescence microscopy with cultured smooth muscle cells revealed colocalization of the 38k protein with myosin and with other cytoskeletal elements. The absence of nuclear immunostaining was discussed in relation to smooth muscle differentiation.


2020 ◽  
Vol 117 (27) ◽  
pp. 15666-15672
Author(s):  
Xiong Liu ◽  
Shi Shu ◽  
Edward D. Korn

Muscle contraction depends on the cyclical interaction of myosin and actin filaments. Therefore, it is important to understand the mechanisms of polymerization and depolymerization of muscle myosins. Muscle myosin 2 monomers exist in two states: one with a folded tail that interacts with the heads (10S) and one with an unfolded tail (6S). It has been thought that only unfolded monomers assemble into bipolar and side-polar (smooth muscle myosin) filaments. We now show by electron microscopy that, after 4 s of polymerization in vitro in both the presence (smooth muscle myosin) and absence of ATP, skeletal, cardiac, and smooth muscle myosins form tail-folded monomers without tail–head interaction, tail-folded antiparallel dimers, tail-folded antiparallel tetramers, unfolded bipolar tetramers, and small filaments. After 4 h, the myosins form thick bipolar and, for smooth muscle myosin, side-polar filaments. Nonphosphorylated smooth muscle myosin polymerizes in the presence of ATP but with a higher critical concentration than in the absence of ATP and forms only bipolar filaments with bare zones. Partial depolymerization in vitro of nonphosphorylated smooth muscle myosin filaments by the addition of MgATP is the reverse of polymerization.


1999 ◽  
Vol 65 (3) ◽  
pp. 151-159 ◽  
Author(s):  
Robert B. Low ◽  
Sheryl L. White ◽  
Elizabeth S. Low ◽  
Pascal Neuville ◽  
Marie-Luce Bochaton-Piallat ◽  
...  

1999 ◽  
Vol 295 (3) ◽  
pp. 453-465 ◽  
Author(s):  
R. Jones ◽  
Wolfgang Steudel ◽  
Sheryl White ◽  
Margaretha Jacobson ◽  
Robert Low

2005 ◽  
Vol 83 (10) ◽  
pp. 899-912 ◽  
Author(s):  
Apolinary Sobieszek

Smooth muscle myosin copurifies with myosin light chain kinase (MLCK) and calmodulin (CaM) as well as with variable amounts of myosin phosphatase. Therefore, myosin filaments formed in vitro also contain relatively high levels of these enzymes. Thus these filaments may be considered to be native-like because they are similar to those expected to exist in vivo. These endogenous enzymes are present at high concentrations relative to myosin, sufficient for rapid phosphorylation and dephosphorylation of the filaments at rates comparable to those observed for contraction and relaxation in intact muscle strips. The phosphorylation by MLCK/CaM complex appears to exhibit some directionality and is not governed by a random diffusional process. For the mixtures of myosin filaments with and without the endogenous MLCK/CaM complex, the complex preferentially phosphorylates its own parent filament at a higher rate than the neighboring filaments. This selective or vectorial-like activation is lost or absent when myosin filaments are dissolved at high ionic strength. Similar vectorial-like activation is exhibited by the reconstituted filament suspensions, but the soluble systems composed of isolated regulatory light chain or soluble myosin head subfragments exhibit normal diffusional kinetic behavior. At physiological concentrations, kinase related protein (telokin) effectively modulates the activation process by reducing the phosphorylation rate of the filaments without affecting the overall phosphorylation level. This results from telokin-induced liberation of the active MLCK/CaM complex from the filaments, so that the latter can also activate the neighboring filaments via a slower diffusional process. When this complex is bound at insufficient levels, this actually results in acceleration of the initial phosphorylation rates. In short, I suggest that in smooth muscle, telokin plays a chaperone role for myosin and its filaments.Key words: smooth muscle, regulation, myosin filament, phosphorylation, activation mechanism, myosin kinase, phosphatase, telokin.


2021 ◽  
Vol 18 (3) ◽  
pp. 147916412110273
Author(s):  
Yusaku Mori ◽  
Marel Gonzalez Medina ◽  
Zhiwei Liu ◽  
June Guo ◽  
Luke S Dingwell ◽  
...  

Background: Insulin exerts vasculoprotective effects on endothelial cells (ECs) and growth-promoting effects on vascular smooth muscle cells (SMCs) in vitro, and suppresses neointimal growth in vivo. Here we determined the role of ECs and SMCs in the effect of insulin on neointimal growth. Methods: Mice with transgene CreERT2 under the control of EC-specific Tie2 (Tie2-Cre) or SMC-specific smooth muscle myosin heavy chain promoter/enhancer (SMMHC-Cre) or littermate controls were crossbred with mice carrying a loxP-flanked insulin receptor (IR) gene. After CreERT2-loxP-mediated recombination was induced by tamoxifen injection, mice received insulin pellet or sham (control) implantation, and underwent femoral artery wire injury. Femoral arteries were collected for morphological analysis 28 days after wire injury. Results: Tamoxifen-treated Tie2-Cre+ mice showed lower IR expression in ECs, but not in SMCs, than Tie2-Cre− mice. Insulin treatment reduced neointimal area after arterial injury in Tie2-Cre− mice, but had no effect in Tie2-Cre+ mice. Tamoxifen-treated SMMHC-Cre+ mice showed lower IR expression in SMCs, but not in ECs, than SMMHC-Cre− mice. Insulin treatment reduced neointimal area in SMMHC-Cre− mice, whereas unexpectedly, it failed to inhibit neointima formation in SMMHC-Cre+ mice. Conclusion: Insulin action in both ECs and SMCs is required for the “anti-restenotic” effect of insulin in vivo.


Sign in / Sign up

Export Citation Format

Share Document