scholarly journals Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus

2005 ◽  
Vol 171 (6) ◽  
pp. 967-979 ◽  
Author(s):  
Thomas Strahl ◽  
Hiroko Hama ◽  
Daryll B. DeWald ◽  
Jeremy Thorner

Phosphatidylinositol 4-kinase, Pik1, is essential for viability. GFP-Pik1 localized to cytoplasmic puncta and the nucleus. The puncta colocalized with Sec7-DsRed, a marker of trans-Golgi cisternae. Kap95 (importin-β) was necessary for nuclear entry, but not Kap60 (importin-α), and exportin Msn5 was required for nuclear exit. Frq1 (frequenin orthologue) also is essential for viability and binds near the NH2 terminus of Pik1. Frq1-GFP localized to Golgi puncta, and Pik1 lacking its Frq1-binding site (or Pik1 overexpressed in frq1Δ cells) did not decorate the Golgi, but nuclear localization was unperturbed. Pik1(Δ10-192), which lacks its nuclear export sequence, displayed prominent nuclear accumulation and did not rescue inviability of pik1Δ cells. A Pik1-CCAAX chimera was excluded from the nucleus and also did not rescue inviability of pik1Δ cells. However, coexpression of Pik1(Δ10-192) and Pik1-CCAAX in pik1Δ cells restored viability. Catalytically inactive derivatives of these compartment-restricted Pik1 constructs indicated that PtdIns4P must be generated both in the nucleus and at the Golgi for normal cell function.

2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Breanna L. Rice ◽  
Matthew S. Stake ◽  
Leslie J. Parent

ABSTRACT Retroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLSs) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-β to mediate nuclear entry. The second NLS (TNPO3), which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), which are known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functions of importin-α/importin-β and importin-11 have been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 directly binds to Gag and mediates its nuclear entry. To our surprise, this interaction did not require the cargo-binding domain (CBD) of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3, including SR domain-containing splicing factors and tRNAs that reenter the nucleus. These results suggest that RSV hijacks this host nuclear import pathway using a unique mechanism, potentially allowing other cargo to simultaneously bind TNPO3. IMPORTANCE RSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here, we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the CBD of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.


1999 ◽  
Vol 145 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Efrosyni Paraskeva ◽  
Elisa Izaurralde ◽  
F. Ralf Bischoff ◽  
Jochen Huber ◽  
Ulrike Kutay ◽  
...  

Importin β is a major mediator of import into the cell nucleus. Importin β binds cargo molecules either directly or via two types of adapter molecules, importin α, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin β–binding domain for binding to, and import by, importin β, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin α. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.


2006 ◽  
Vol 17 (9) ◽  
pp. 4002-4013 ◽  
Author(s):  
Anabel Gil ◽  
Amparo Andrés-Pons ◽  
Elena Fernández ◽  
Miguel Valiente ◽  
Josema Torres ◽  
...  

The targeting of the tumor suppressor PTEN protein to distinct subcellular compartments is a major regulatory mechanism of PTEN function, by controlling its access to substrates and effector proteins. Here, we investigated the molecular basis and functional consequences of PTEN nuclear/cytoplasmic distribution. PTEN accumulated in the nucleus of cells treated with apoptotic stimuli. Nuclear accumulation of PTEN was enhanced by mutations targeting motifs in distinct PTEN domains, and it was dependent on an N-terminal nuclear localization domain. Coexpression of a dominant negative Ran GTPase protein blocked PTEN accumulation in the nucleus, which was also affected by coexpression of importin α proteins. The lipid- and protein-phosphatase activity of PTEN differentially modulated PTEN nuclear accumulation. Furthermore, catalytically active nuclear PTEN enhanced cell apoptotic responses. Our findings indicate that multiple nuclear exclusion motifs and a nuclear localization domain control PTEN nuclear localization by a Ran-dependent mechanism and suggest a proapoptotic role for PTEN in the cell nucleus.


2005 ◽  
Vol 289 (6) ◽  
pp. H2519-H2525 ◽  
Author(s):  
M. R. Voss ◽  
S. Gupta ◽  
J. P. Stice ◽  
G. Baumgarten ◽  
L. Lu ◽  
...  

Heat shock protein (HSP)72, the inducible form of HSP70, protects cells against a variety of injuries, but underlying mechanisms are poorly defined. To investigate the protective effects of HSP72, multiple clones expressing wild-type (WT) HSP72 and two mutants with defective nucleolar and nuclear localization (M45 and 985A, respectively) were made with the tet-off system in C2C12 cells. Four different parameters of cell function/injury were examined after simulated ischemia: protein synthesis, polysome formation, DNA synthesis, and lactate dehydrogenase (LDH release). Overexpression of WT HSP72 was also compared to nontransfected C2C12 cells. As expected, overexpression of HSP72 protected against simulated ischemia and reoxygenation for all parameters. In contrast, both M45 and 985A showed abnormal protein synthesis and polysome formation, both after simulated ischemia and under control conditions. Total RNA was slightly reduced in M45 and 985A at baseline, but 1 h after hypoxia, RNA levels were protected in all clones but significantly decreased in nontransfected C2C12 cells. Clones expressing 985A had nuclear retention of mRNA, suggesting that HSP72 is needed for nuclear export of RNA. All clones, both WT and mutant, had protection of DNA synthesis compared to C2C12 cells, but 985A had greater release of LDH after injury than any other group. These results support a multifactoral protective effect of HSP72, some aspects dependent on nuclear localization with stress and some not. The protection of protein synthesis and polysome formation, and abnormalities in these with the mutants, support a role for HSP72 in these processes both in the normal cell and in injury.


2004 ◽  
Vol 280 (11) ◽  
pp. 10599-10606 ◽  
Author(s):  
Min-Hsuan Chen ◽  
Iris Ben-Efraim ◽  
Gregory Mitrousis ◽  
Nancy Walker-Kopp ◽  
Peter J. Sims ◽  
...  

2014 ◽  
Vol 95 (8) ◽  
pp. 1723-1733 ◽  
Author(s):  
Gavan Holloway ◽  
Vi T. Dang ◽  
David A. Jans ◽  
Barbara S. Coulson

The importance of innate immunity to rotaviruses is exemplified by the range of strategies evolved by rotaviruses to interfere with the IFN response. We showed previously that rotaviruses block gene expression induced by type I and II IFNs, through a mechanism allowing activation of signal transducer and activator of transcription (STAT) 1 and STAT2 but preventing their nuclear accumulation. This normally occurs through activated STAT1/2 dimerization, enabling an interaction with importin α5 that mediates transport into the nucleus. In rotavirus-infected cells, STAT1/2 inhibition may limit the antiviral actions of IFN produced early in infection. Here we further analysed the block to STAT1/2 nuclear accumulation, showing that activated STAT1 accumulates in the cytoplasm in rotavirus-infected cells. STAT1/2 nuclear accumulation was inhibited by rotavirus even in the presence of the nuclear export inhibitor Leptomycin B, demonstrating that enhanced nuclear export is not involved in STAT1/2 cytoplasmic retention. The ability to inhibit STAT nuclear translocation was completely conserved amongst the group A rotaviruses tested, including a divergent avian strain. Analysis of mutant rotaviruses indicated that residues after amino acid 47 of NSP1 are dispensable for STAT inhibition. Furthermore, expression of any of the 12 Rhesus monkey rotavirus proteins did not inhibit IFN-stimulated STAT1 nuclear translocation. Finally, co-immunoprecipitation experiments from transfected epithelial cells showed that STAT1/2 binds importin α5 normally following rotavirus infection. These findings demonstrate that rotavirus probably employs a novel strategy to inhibit IFN-induced STAT signalling, which acts after STAT activation and binding to the nuclear import machinery.


1999 ◽  
Vol 19 (2) ◽  
pp. 1025-1037 ◽  
Author(s):  
Joanne G. A. Savory ◽  
Brian Hsu ◽  
Ian R. Laquian ◽  
Ward Giffin ◽  
Terry Reich ◽  
...  

ABSTRACT Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t 1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t 1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export.


2010 ◽  
Vol 285 (26) ◽  
pp. 19935-19946 ◽  
Author(s):  
Sundy N. Y. Yang ◽  
Agnes A. S. Takeda ◽  
Marcos R. M. Fontes ◽  
Jonathan M. Harris ◽  
David A. Jans ◽  
...  

2017 ◽  
Vol 474 (24) ◽  
pp. 4091-4104 ◽  
Author(s):  
Natália E. Bernardes ◽  
Agnes A.S. Takeda ◽  
Thiago R. Dreyer ◽  
Fernanda B. Cupertino ◽  
Stela Virgilio ◽  
...  

The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP–NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915TISSKRQRRHSKS927) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements.


1987 ◽  
Vol 7 (7) ◽  
pp. 2451-2456
Author(s):  
R H Lyons ◽  
B Q Ferguson ◽  
M Rosenberg

The adenovirus E1a gene products are nuclear proteins important in transcriptional control of viral functions during infection. By producing normal E1a proteins and derivatives of E1a in bacteria and microinjecting these proteins into cultured cells, we were able to examine their ability to localize to the nucleus. We showed that a short peptide sequence at the carboxyl terminus of E1a is necessary for the rapid (30-min) nuclear localization of that protein. Additionally, we showed that just the last five amino acids of E1a are sufficient to direct nuclear accumulation of a heterologous protein, Escherichia coli galactokinase, with the same kinetics as native E1a. The mechanism by which this pentamer mediates rapid nuclear localization was examined by testing the ability of a galactokinase derivative which has no signal pentamer to exit the nucleus, as well as to enter it. Because neither free entry nor exit was detected, the effect of the signal is unlikely to be through increased nuclear retention of freely diffusible proteins but rather by enhancement of entry into the nucleus.


Sign in / Sign up

Export Citation Format

Share Document