scholarly journals Discrimination between NL1- and NL2-Mediated Nuclear Localization of the Glucocorticoid Receptor

1999 ◽  
Vol 19 (2) ◽  
pp. 1025-1037 ◽  
Author(s):  
Joanne G. A. Savory ◽  
Brian Hsu ◽  
Ian R. Laquian ◽  
Ward Giffin ◽  
Terry Reich ◽  
...  

ABSTRACT Glucocorticoid receptor (GR) cycles between a free liganded form that is localized to the nucleus and a heat shock protein (hsp)-immunophilin-complexed, unliganded form that is usually localized to the cytoplasm but that can also be nuclear. In addition, rapid nucleocytoplasmic exchange or shuttling of the receptor underlies its localization. Nuclear import of liganded GR is mediated through a well-characterized sequence, NL1, adjacent to the receptor DNA binding domain and a second, uncharacterized motif, NL2, that overlaps with the ligand binding domain. In this study we report that rapid nuclear import (half-life [t 1/2] of 4 to 6 min) of agonist- and antagonist-treated GR and the localization of unliganded, hsp-associated GRs to the nucleus in G0 are mediated through NL1 and correlate with the binding of GR to pendulin/importin α. By contrast, NL2-mediated nuclear transfer of GR occurred more slowly (t 1/2 = 45 min to 1 h), was agonist specific, and appeared to be independent of binding to importin α. Together, these results suggest that NL2 mediates the nuclear import of GR through an alternative nuclear import pathway. Nuclear export of GR was inhibited by leptomycin B, suggesting that the transfer of GR to the cytoplasm is mediated through the CRM1-dependent pathway. Inhibition of GR nuclear export by leptomycin B enhanced the nuclear localization of both unliganded, wild-type GR and hormone-treated NL1− GR. These results highlight that the subcellular localization of both liganded and unliganded GRs is determined, at least in part, by a flexible equilibrium between the rates of nuclear import and export.

2020 ◽  
Vol 94 (17) ◽  
Author(s):  
Breanna L. Rice ◽  
Matthew S. Stake ◽  
Leslie J. Parent

ABSTRACT Retroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLSs) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-β to mediate nuclear entry. The second NLS (TNPO3), which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), which are known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functions of importin-α/importin-β and importin-11 have been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 directly binds to Gag and mediates its nuclear entry. To our surprise, this interaction did not require the cargo-binding domain (CBD) of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3, including SR domain-containing splicing factors and tRNAs that reenter the nucleus. These results suggest that RSV hijacks this host nuclear import pathway using a unique mechanism, potentially allowing other cargo to simultaneously bind TNPO3. IMPORTANCE RSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here, we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the CBD of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.


2001 ◽  
Vol 21 (17) ◽  
pp. 5992-6005 ◽  
Author(s):  
Audrey H. Wang ◽  
Xiang-Jiao Yang

ABSTRACT Nucleocytoplasmic trafficking of histone deacetylase 4 (HDAC4) plays an important role in regulating its function, and binding of 14-3-3 proteins is necessary for its cytoplasmic retention. Here, we report the identification of nuclear import and export sequences of HDAC4. While its N-terminal 118 residues modulate the nuclear localization, residues 244 to 279 constitute an authentic, strong nuclear localization signal. Mutational analysis of this signal revealed that three arginine-lysine clusters are necessary for its nuclear import activity. As for nuclear export, leucine-rich sequences located in the middle part of HDAC4 do not function as nuclear export signals. By contrast, a hydrophobic motif (MXXLXVXV) located at the C-terminal end serves as a nuclear export signal that is necessary for cytoplasmic retention of HDAC4. This motif is required for CRM1-mediated nuclear export of HDAC4. Furthermore, binding of 14-3-3 proteins promotes cytoplasmic localization of HDAC4 by both inhibiting its nuclear import and stimulating its nuclear export. Unlike wild-type HDAC4, a point mutant with abrogated MEF2-binding ability remains cytoplasmic upon exogenous expression of MEF2C, supporting the notion that direct MEF2 binding targets HDAC4 to the nucleus. Therefore, HDAC4 possesses intrinsic nuclear import and export signals for its dynamic nucleocytoplasmic shuttling, and association with 14-3-3 and MEF2 proteins affects such shuttling and thus directs HDAC4 to the cytoplasm and the nucleus, respectively.


2000 ◽  
Vol 20 (12) ◽  
pp. 4295-4308 ◽  
Author(s):  
Markus Künzler ◽  
Thomas Gerstberger ◽  
Françoise Stutz ◽  
F. Ralf Bischoff ◽  
Ed Hurt

ABSTRACT The RanGTP-binding protein RanBP1, which is located in the cytoplasm, has been implicated in release of nuclear export complexes from the cytoplasmic side of the nuclear pore complex. Here we show that Yrb1 (the yeast homolog of RanBP1) shuttles between the nucleus and the cytoplasm. Nuclear import of Yrb1 is a facilitated process that requires a short basic sequence within the Ran-binding domain (RBD). By contrast, nuclear export of Yrb1 requires an intact RBD, which forms a ternary complex with the Xpo1 (Crm1) NES receptor in the presence of RanGTP. Nuclear export of Yrb1, however, is insensitive towards leptomycin B, suggesting a novel type of substrate recognition between Yrb1 and Xpo1. Taken together, these data suggest that ongoing nuclear import and export is an important feature of Yrb1 function in vivo.


1998 ◽  
Vol 18 (9) ◽  
pp. 5445-5456 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Mark Hannink

ABSTRACT The IκBα protein is able both to inhibit nuclear import of Rel/NF-κB proteins and to mediate the export of Rel/NF-κB proteins from the nucleus. We now demonstrate that the c-Rel–IκBα complex is stably retained in the cytoplasm in the presence of leptomycin B, a specific inhibitor of Crm1-mediated nuclear export. In contrast, leptomycin B treatment results in the rapid and complete relocalization of the v-Rel–IκBα complex from the cytoplasm to the nucleus. IκBα also mediates the rapid nuclear shuttling of v-Rel in an interspecies heterokaryon assay. Thus, continuous nuclear export is required for cytoplasmic retention of the v-Rel–IκBα complex. Furthermore, although IκBα is able to mask the c-Rel-derived nuclear localization sequence (NLS), IκBα is unable to mask the v-Rel-derived NLS in the context of the v-Rel–IκBα complex. Taken together, our results demonstrate that IκBα is unable to inhibit nuclear import of v-Rel. We have identified two amino acid differences between c-Rel and v-Rel (Y286S and L302P) which link the failure of IκBα to inhibit nuclear import and DNA binding of a mutant c-Rel protein to oncogenesis. Our results support a model in which loss of IκBα-mediated control over c-Rel leads to oncogenic activation of c-Rel.


2005 ◽  
Vol 169 (3) ◽  
pp. 415-424 ◽  
Author(s):  
Christian Faul ◽  
Stefan Hüttelmaier ◽  
Jun Oh ◽  
Virginie Hachet ◽  
Robert H. Singer ◽  
...  

14-3-3 proteins are phosphoserine/threonine-binding proteins that play important roles in many regulatory processes, including intracellular protein targeting. 14-3-3 proteins can anchor target proteins in the cytoplasm and in the nucleus or can mediate their nuclear export. So far, no role for 14-3-3 in mediating nuclear import has been described. There is also mounting evidence that nuclear import is regulated by the phosphorylation of cargo proteins, but the underlying mechanism remains elusive. Myopodin is a dual-compartment, actin-bundling protein that functions as a tumor suppressor in human bladder cancer. In muscle cells, myopodin redistributes between the nucleus and the cytoplasm in a differentiation-dependent and stress-induced fashion. We show that importin α binding and the subsequent nuclear import of myopodin are regulated by the serine/threonine phosphorylation-dependent binding of myopodin to 14-3-3. These results establish a novel paradigm for the promotion of nuclear import by 14-3-3 binding. They provide a molecular explanation for the phosphorylation-dependent nuclear import of nuclear localization signal-containing cargo proteins.


2020 ◽  
Author(s):  
Breanna L. Rice ◽  
Matthew S. Stake ◽  
Leslie J. Parent

AbstractRetroviral Gag polyproteins orchestrate the assembly and release of nascent virus particles from the plasma membranes of infected cells. Although it was traditionally thought that Gag proteins trafficked directly from the cytosol to the plasma membrane, we discovered that the oncogenic avian alpharetrovirus Rous sarcoma virus (RSV) Gag protein undergoes transient nucleocytoplasmic transport as an intrinsic step in virus assembly. Using a genetic approach in yeast, we identified three karyopherins that engage the two independent nuclear localization signals (NLS) in Gag. The primary NLS is in the nucleocapsid (NC) domain of Gag and binds directly to importin-α, which recruits importin-β to mediate nuclear entry. The second NLS, which resides in the matrix (MA) domain, is dependent on importin-11 and transportin-3 (TNPO3), known as MTR10p and Kap120p in yeast, although it is not clear whether these import factors are independent or additive. The functionality of importin α/β and importin-11 has been verified in avian cells, whereas the role of TNPO3 has not been studied. In this report, we demonstrate that TNPO3 mediates nuclear entry of Gag and directly binds to Gag. To our surprise, this interaction did not require the cargo-binding domain of TNPO3, which typically mediates nuclear entry for other binding partners of TNPO3 including SR-domain containing splicing factors and tRNAs that re-enter the nucleus. These results suggest that RSV hijacks the host nuclear import pathway using a unique mechanism, potentially allowing other cargo to bind TNPO3 simultaneously.ImportanceRSV Gag nuclear entry is facilitated using three distinct host import factors that interact with nuclear localization signals in the Gag MA and NC domains. Here we show that the MA region is required for nuclear import of Gag through the TNPO3 pathway. Gag nuclear entry does not require the cargo binding domain of TNPO3. Understanding the molecular basis for TNPO3-mediated nuclear trafficking of the RSV Gag protein may lead to a deeper appreciation for whether different import factors play distinct roles in retrovirus replication.


2006 ◽  
Vol 80 (20) ◽  
pp. 10021-10035 ◽  
Author(s):  
Janneke Verhagen ◽  
Michelle Donnelly ◽  
Gillian Elliott

ABSTRACT A new group of nucleocytoplasmic shuttling proteins has recently been identified in the structural proteins encoded by several alphaherpesvirus UL47 genes. Nuclear import and export signals for the bovine herpesvirus type 1 UL47 protein (VP8 or bUL47) have been described previously. Here, we study the trafficking of bUL47 in detail and identify an import signal different from that shown before. It comprises a 20-residue N-terminal peptide that is fully transferable and targets a large, normally cytosolic protein to the nucleus. A conserved RRPRRS motif within this peptide was shown to be essential but not sufficient for nuclear targeting. Using interspecies heterokaryon assays, we further demonstrate that the export activity of the published leucine-rich nuclear export signal (NES) is also transferable to a large protein but is functionally weak compared to the activity of the HIV-1 Rev NES. We show that nuclear export dictated by this bUL47 NES is sensitive to leptomycin B (LMB) and therefore dependent on the export receptor CRM-1. However, nuclear export of full-length bUL47 is fully resistant to LMB, suggesting the presence of an additional NES. We go on to identify a second NES in bUL47 within a 28-residue peptide that is in close proximity to but entirely separable from the N-terminal import signal, and we use fluorescence loss in photobleaching to confirm its activity. This NES is resistant to leptomycin B, and therefore utilizes an export receptor other than CRM-1. As this new sequence bears little similarity to other export signals so far defined, we suggest it may be involved in bUL47 export from the nucleus via a novel cellular receptor.


1999 ◽  
Vol 354 (1389) ◽  
pp. 1601-1609 ◽  
Author(s):  
R. T. Hay ◽  
L. Vuillard ◽  
J. M. P. Desterro ◽  
M. S. Rodriguez

In unstimulated cells the transcription factor NF–κB is held in the cytoplasm in an inactive state by IκB inhibitor proteins. Ultimately activation of NF–κB is achieved by ubiquitination and proteasome–mediated degradation of IκBα and we have therefore investigated factors which control this proteolysis. Signal–induced degradation of IκBα exposes the nuclear localization signal of NF–κB, thus allowing it to translocate into the nucleus and activate transcription from responsive genes. An autoregulatory loop is established when NF–κB induces expression of the IκBα gene and newly synthesized IκBα accumulates in the nucleus where it negatively regulates NF–κB–dependent transcription. As part of this post–induction repression, the nuclear export signal on IκBα mediates transport of NF–κB–IκBα complexes from the nucleus to the cytoplasm. As nuclear export of IκBα is blocked by leptomycin B this drug was used to examine the effect of cellular location on susceptibility of IκBα to signal–induced degradation. In the presence of leptomycin B, IκBα is accumulated in the nucleus and in this compartment is resistant to signal–induced degradation. Thus signal–induced degradation of IκBα is mainly, if not exclusively a cytoplasmic process. An efficient nuclear export of IκBα is therefore essential for maintaining a low level of IκBα in the nucleus and allowing NF–κB to be transcriptionally active upon cell stimulation. We have detected a modified form of IκBα, conjugated to the small ubiquitin–like protein SUMO–1, which is resistant to signal–induced degradation. SUMO–1 modified IκBα remains associated with NF–κB and thus overexpression of SUMO–1 inhibits the signal–induced activation of NF–κB–dependent transcription. Reconstitution of the conjugation reaction with highly purified proteins demonstrated that in the presence of a novel E1 SUMO–1 activating enzyme, Ubch9 directly conjugated SUMO–1 to IκBα on residues K21 and K22, which are also used for ubiquitin modification. Thus, while ubiquitination targets proteins for rapid degradation, SUMO–1 modification acts antagonistically to generate proteins resistant to degradation.


1999 ◽  
Vol 145 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Efrosyni Paraskeva ◽  
Elisa Izaurralde ◽  
F. Ralf Bischoff ◽  
Jochen Huber ◽  
Ulrike Kutay ◽  
...  

Importin β is a major mediator of import into the cell nucleus. Importin β binds cargo molecules either directly or via two types of adapter molecules, importin α, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin β–binding domain for binding to, and import by, importin β, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin α. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1059-1059
Author(s):  
Inbal Hazan-Halevy ◽  
David Harris ◽  
Zhiming Liu ◽  
Alessandra Ferrajoli ◽  
Michael J Keating ◽  
...  

Abstract B-cell chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the Western hemisphere. Although several chromosomal and molecular abnormalities have been identified in CLL cells in recent years, the pathogenesis of CLL is still poorly understood. Signal transducer and activator of transcription 3 (STAT3) plays a major role in cellular physiology. Upon exposure to cytokines or growth factors, STAT3 is tyrosine-phosphorylated, migrates to the nucleus, and binds to DNA. Constitutive phosphorylation of STAT3 on tyrosine 705 residues has been found in several solid tumors and hematologic malignancies. Remarkably, CLL is the only disease in which STAT3 is constitutively phosphorylated (p) on serine rather than tyrosine residues (Frank et al. JCI100:3149, 1997). We have recently discovered that serine pSTAT3 translocates to the nucleus, binds to DNA, activates transcription, and plays a major role in the pathogenensis of CLL. Little is known about the transport mechanisms utilized by STAT molecules in fresh leukemia cells, and no data are available on the transport mechanism of serine pSTAT3. Therefore, we sought to identify the nucleocytoplasmic transport system of serine pSTAT3 in CLL cells. In other cellular systems, importin-α3 or -α6 binds to the nuclear localization signal in STAT3, the N terminus of importin-α is directly recognized by importin-β1, and the complex consisting of STAT3, importin-α3 and improtin-β1 transits through the nuclear pore complexes (NPC). To identify which nucleocytoplasmic transport mechanism of serine pSTAT3 is operative in CLL cells, we performed a series of immunoprecipitation experiments with antibodies to STAT3 and importin-β1. We found that STAT3 co-immunoprecipitated with importin-β1 in whole cell, cytoplasmic, and nuclear extracts. We could not determine which member of the importin-α family binds serine pSTAT3 to form a complex with importin-β1 because none of the investigated α-importins (importin-α1, -α3, -α5, -α6, and -α7) co-immunoprecipitated with STAT3. Similar results were obtained when importin-β1 was immunoprecipitated. Unlike the studied α-importins, serine pSTAT3 and STAT3 co-immunoprecipitated with importin-β1. Thus, either an α-importin binds serine pSTAT3 but failed to co-immunoprecipitate, or an unidentified transporter binds serine pSTAT3. After establishing that importin-β1 translocates serine pSTAT3 to the nucleus, we sought to identify the nuclear export mechanism. The established nuclear export mechanism of STAT3 consists of CRM1 that binds to the nuclear export signal on STAT3 and exports STAT3 through the NPC. Using an identical experimental design, we immunoprecipitated whole cell, cytoplasmic, and nuclear extracts with anti-CRM1 antibodies and found that STAT3 and serine pSTAT3 co-immunoprecipitated with CRM1. Then, we immunoprecipitated the cell extracts with anti-STAT3 antibodies. In these experiments, CRM1 co-immunoprecipitated with STAT3. To further elucidate the role of CRM1 in the STAT3 nuclear export system, we incubated CLL cells with increasing concentrations of the CRM1 inhibitor leptomycin B and assessed STAT3 protein levels in nuclear extracts by Western immunoblotting. We found that leptomycin B increased the accumulation of STAT3 in the nucleus in a dose dependent manner, further confirming that CRM1 exports STAT3 from the nucleus to the cytoplasm. Taken together, our data demonstrate for the first time that in CLL cells STAT3 and serine pSTAT3 are transported into the nucleus by importin-β1 and exported by CRM1. Targeting this nuclear trafficking system might provide a new therapeutic strategy for the treatment of CLL.


Sign in / Sign up

Export Citation Format

Share Document