Effect of mutation of amino acids 246–251 (KRKHKK) in HSP72 on protein synthesis and recovery from hypoxic injury

2005 ◽  
Vol 289 (6) ◽  
pp. H2519-H2525 ◽  
Author(s):  
M. R. Voss ◽  
S. Gupta ◽  
J. P. Stice ◽  
G. Baumgarten ◽  
L. Lu ◽  
...  

Heat shock protein (HSP)72, the inducible form of HSP70, protects cells against a variety of injuries, but underlying mechanisms are poorly defined. To investigate the protective effects of HSP72, multiple clones expressing wild-type (WT) HSP72 and two mutants with defective nucleolar and nuclear localization (M45 and 985A, respectively) were made with the tet-off system in C2C12 cells. Four different parameters of cell function/injury were examined after simulated ischemia: protein synthesis, polysome formation, DNA synthesis, and lactate dehydrogenase (LDH release). Overexpression of WT HSP72 was also compared to nontransfected C2C12 cells. As expected, overexpression of HSP72 protected against simulated ischemia and reoxygenation for all parameters. In contrast, both M45 and 985A showed abnormal protein synthesis and polysome formation, both after simulated ischemia and under control conditions. Total RNA was slightly reduced in M45 and 985A at baseline, but 1 h after hypoxia, RNA levels were protected in all clones but significantly decreased in nontransfected C2C12 cells. Clones expressing 985A had nuclear retention of mRNA, suggesting that HSP72 is needed for nuclear export of RNA. All clones, both WT and mutant, had protection of DNA synthesis compared to C2C12 cells, but 985A had greater release of LDH after injury than any other group. These results support a multifactoral protective effect of HSP72, some aspects dependent on nuclear localization with stress and some not. The protection of protein synthesis and polysome formation, and abnormalities in these with the mutants, support a role for HSP72 in these processes both in the normal cell and in injury.

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Kathryn G. Helmstadter ◽  
Senka Ljubojevic-Holzer ◽  
Brent M. Wood ◽  
Khanha D. Taheri ◽  
Simon Sedej ◽  
...  

AbstractNuclear histone deacetylase 4 (HDAC4) represses MEF2-mediated transcription, implicated in the development of heart failure. CaMKII-dependent phosphorylation drives nucleus-to-cytoplasm HDAC4 shuttling, but protein kinase A (PKA) is also linked to HDAC4 translocation. However, the interplay of CaMKII and PKA in regulating adult cardiomyocyte HDAC4 translocation is unclear. Here we sought to determine the interplay of PKA- and CaMKII-dependent HDAC4 phosphorylation and translocation in adult mouse, rabbit and human ventricular myocytes. Confocal imaging and protein analyses revealed that inhibition of CaMKII—but not PKA, PKC or PKD—raised nucleo-to-cytoplasmic HDAC4 fluorescence ratio (FNuc/FCyto) by ~ 50%, indicating baseline CaMKII activity that limits HDAC4 nuclear localization. Further CaMKII activation (via increased extracellular [Ca2+], high pacing frequencies, angiotensin II or overexpression of CaM or CaMKIIδC) led to significant HDAC4 nuclear export. In contrast, PKA activation by isoproterenol or forskolin drove HDAC4 into the nucleus (raising FNuc/FCyto by > 60%). These PKA-mediated effects were abolished in cells pretreated with PKA inhibitors and in cells expressing mutant HDAC4 in S265/266A mutant. In physiological conditions where both kinases are active, PKA-dependent nuclear accumulation of HDAC4 was predominant in the very early response, while CaMKII-dependent HDAC4 export prevailed upon prolonged stimuli. This orchestrated co-regulation was shifted in failing cardiomyocytes, where CaMKII-dependent effects predominated over PKA-dependent response. Importantly, human cardiomyocytes showed similar CaMKII- and PKA-dependent HDAC4 shifts. Collectively, CaMKII limits nuclear localization of HDAC4, while PKA favors HDAC4 nuclear retention and S265/266 is essential for PKA-mediated regulation. These pathways thus compete in HDAC4 nuclear localization and transcriptional regulation in cardiac signaling.


RNA ◽  
2021 ◽  
pp. rna.078880.121
Author(s):  
Charles Wang ◽  
Keaton W Barr ◽  
Dean Neutel ◽  
Kevin Roy ◽  
Yanru Liu ◽  
...  

The expression of bromodomain-containing proteins that regulate chromatin structure and accessibility must be tightly controlled to ensure the appropriate regulation of gene expression. In the yeast S. cerevisiae, Bromodomain Factor 2 (BDF2) expression is extensively regulated post-transcriptionally during stress by RNase III-mediated decay (RMD), which is triggered by cleavage of the BDF2 mRNA in the nucleus by the RNase III homologue Rnt1p. Previous studies have shown that RMD-mediated down-regulation of BDF2 is hyper-activated in osmotic stress conditions, yet the mechanisms driving the enhanced nuclear cleavage of BDF2 RNA under these conditions remain unknown. Here, we show that RMD hyper-activation can be detected in multiple stress conditions that inhibit mRNA export, and that Rnt1p remains primarily localized in the nucleus during salt stress. We show that globally inhibiting mRNA nuclear export by anchoring away mRNA biogenesis or export factors out of the nucleus can recapitulate RMD hyper-activation in the absence of stress. RMD hyperactivation requires Rnt1p nuclear localization but does not depend on the BDF2 gene endogenous promoter, and its efficiency is affected by the structure of the stem-loop cleaved by Rnt1p. Because multiple stress conditions have been shown to mediate global inhibition of mRNA export, our results suggest that the hyperactivation of RMD is primarily the result of the increased nuclear retention of the BDF2 mRNA during stress.


2002 ◽  
Vol 83 (4) ◽  
pp. 795-800 ◽  
Author(s):  
Marieke A. Tijms ◽  
Yvonne van der Meer ◽  
Eric J. Snijder

RNA synthesis (genome replication and subgenomic mRNA transcription) directed by equine arteritis virus (EAV; family Arteriviridae, order Nidovirales) occurs on modified cytoplasmic membranes to which most viral replicase subunits localize. Remarkably, a fraction of non-structural protein 1 (nsp1), a protein essential for transcription but dispensable for genome replication, is present in the host cell nucleus, in particular during the earlier stages of infection. Expression of GFP-tagged fusion proteins revealed that nsp1 is actively imported into the nucleus. Although the signals responsible for nsp1 transport could not be identified, our studies revealed that another EAV protein with a partially nuclear localization, the nucleocapsid (N) protein, utilizes the CRM1-mediated nuclear export pathway. Inactivation of this pathway with the drug leptomycin B resulted in the unexpected and immediate nuclear retention of all N protein molecules, thus revealing that the protein shuttles between cytoplasm and nucleus before playing its role in cytoplasmic virus assembly.


2005 ◽  
Vol 171 (6) ◽  
pp. 967-979 ◽  
Author(s):  
Thomas Strahl ◽  
Hiroko Hama ◽  
Daryll B. DeWald ◽  
Jeremy Thorner

Phosphatidylinositol 4-kinase, Pik1, is essential for viability. GFP-Pik1 localized to cytoplasmic puncta and the nucleus. The puncta colocalized with Sec7-DsRed, a marker of trans-Golgi cisternae. Kap95 (importin-β) was necessary for nuclear entry, but not Kap60 (importin-α), and exportin Msn5 was required for nuclear exit. Frq1 (frequenin orthologue) also is essential for viability and binds near the NH2 terminus of Pik1. Frq1-GFP localized to Golgi puncta, and Pik1 lacking its Frq1-binding site (or Pik1 overexpressed in frq1Δ cells) did not decorate the Golgi, but nuclear localization was unperturbed. Pik1(Δ10-192), which lacks its nuclear export sequence, displayed prominent nuclear accumulation and did not rescue inviability of pik1Δ cells. A Pik1-CCAAX chimera was excluded from the nucleus and also did not rescue inviability of pik1Δ cells. However, coexpression of Pik1(Δ10-192) and Pik1-CCAAX in pik1Δ cells restored viability. Catalytically inactive derivatives of these compartment-restricted Pik1 constructs indicated that PtdIns4P must be generated both in the nucleus and at the Golgi for normal cell function.


2021 ◽  
Author(s):  
Lauren Duan ◽  
Benjamin L. Zaepfel ◽  
Vasilisa Aksenova ◽  
Mary Dasso ◽  
Jeffrey D. Rothstein ◽  
...  

AbstractNuclear clearance of the DNA/RNA-binding protein TDP-43 is a pathologic hallmark of amyotrophic lateral sclerosis and frontotemporal dementia that remains unexplained. Moreover, our current understanding of TDP-43 nucleocytoplasmic shuttling does not fully explain the predominantly nuclear localization of TDP-43 in healthy cells. Here, we used permeabilized and live-cell models to investigate TDP-43 nuclear export and the role of RNA in TDP-43 localization. We show that TDP-43 nuclear efflux occurs in low-ATP conditions and independent of active mRNA export, consistent with export by passive diffusion through nuclear pore channels. TDP-43 nuclear residence requires binding to GU-rich nuclear intronic pre-mRNAs, based on the induction of TDP-43 nuclear efflux by RNase and GU-rich oligomers and TDP-43 nuclear retention conferred by pre-mRNA splicing inhibitors. Mutation of TDP-43 RNA recognition motifs disrupts TDP-43 nuclear accumulation and abolishes transcriptional blockade-induced TDP-43 nuclear efflux, demonstrating strict dependence of TDP-43 nuclear localization on RNA binding. Thus, the nuclear abundance of GU-rich intronic pre-mRNAs, as dictated by the balance of transcription and pre-mRNA processing, regulates TDP-43 nuclear sequestration and availability for passive nuclear export.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jinyoung Kim ◽  
Kihyoun Park ◽  
Min Jung Kim ◽  
Hyejin Lim ◽  
Kook Hwan Kim ◽  
...  

AbstractWe have reported that autophagy is crucial for clearance of amyloidogenic human IAPP (hIAPP) oligomer, suggesting that an autophagy enhancer could be a therapeutic modality against human diabetes with amyloid accumulation. Here, we show that a recently identified autophagy enhancer (MSL-7) reduces hIAPP oligomer accumulation in human induced pluripotent stem cell-derived β-cells (hiPSC-β-cells) and diminishes oligomer-mediated apoptosis of β-cells. Protective effects of MSL-7 against hIAPP oligomer accumulation and hIAPP oligomer-mediated β-cell death are significantly reduced in cells with knockout of MiTF/TFE family members such as Tfeb or Tfe3. MSL-7 improves glucose tolerance and β-cell function of hIAPP+ mice on high-fat diet, accompanied by reduced hIAPP oligomer/amyloid accumulation and β-cell apoptosis. Protective effects of MSL-7 against hIAPP oligomer-mediated β-cell death and the development of diabetes are also significantly reduced by β-cell-specific knockout of Tfeb. These results suggest that an autophagy enhancer could have therapeutic potential against human diabetes characterized by islet amyloid accumulation.


2021 ◽  
Vol 22 (15) ◽  
pp. 7917
Author(s):  
Hideaki Kaneto ◽  
Tomohiko Kimura ◽  
Masashi Shimoda ◽  
Atsushi Obata ◽  
Junpei Sanada ◽  
...  

Fundamental pancreatic β-cell function is to produce and secrete insulin in response to blood glucose levels. However, when β-cells are chronically exposed to hyperglycemia in type 2 diabetes mellitus (T2DM), insulin biosynthesis and secretion are decreased together with reduced expression of insulin transcription factors. Glucagon-like peptide-1 (GLP-1) plays a crucial role in pancreatic β-cells; GLP-1 binds to the GLP-1 receptor (GLP-1R) in the β-cell membrane and thereby enhances insulin secretion, suppresses apoptotic cell death and increase proliferation of β-cells. However, GLP-1R expression in β-cells is reduced under diabetic conditions and thus the GLP-1R activator (GLP-1RA) shows more favorable effects on β-cells at an early stage of T2DM compared to an advanced stage. On the other hand, it has been drawing much attention to the idea that GLP-1 signaling is important in arterial cells; GLP-1 increases nitric oxide, which leads to facilitation of vascular relaxation and suppression of arteriosclerosis. However, GLP-1R expression in arterial cells is also reduced under diabetic conditions and thus GLP-1RA shows more protective effects on arteriosclerosis at an early stage of T2DM. Furthermore, it has been reported recently that administration of GLP-1RA leads to the reduction of cardiovascular events in various large-scale clinical trials. Therefore, we think that it would be better to start GLP-1RA at an early stage of T2DM for the prevention of arteriosclerosis and protection of β-cells against glucose toxicity in routine medical care.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1680
Author(s):  
Marius Drysch ◽  
Sonja Verena Schmidt ◽  
Mustafa Becerikli ◽  
Felix Reinkemeier ◽  
Stephanie Dittfeld ◽  
...  

Ischemia reperfusion (IR) injury remains an important topic in clinical medicine. While a multitude of prophylactic and therapeutic strategies have been proposed, recent studies have illuminated protective effects of myostatin inhibition. This study aims to elaborate on the intracellular pathways involved in myostatin signaling and to explore key proteins that convey protective effects in IR injury. We used CRISPR/Cas9 gene editing to introduce a Myostatin (Mstn) deletion into a C2C12 cell line. In subsequent experiments, we evaluated overall cell death, activation of apoptotic pathways, ROS generation, lipid peroxidation, intracellular signaling via mitogen-activated protein kinases (MAPKs), cell migration, and cell proliferation under hypoxic conditions followed by reoxygenation to simulate an IR situation in vitro (hypoxia reoxygenation). It was found that mitogen-activated protein kinase kinase 3/6, also known as MAPK/ERK Kinase 3/6 (MEK3/6), and subsequent p38 MAPK activation were blunted in C2C12-Mstn−/− cells in response to hypoxia reoxygenation (HR). Similarly, c-Jun N-terminal kinase (JNK) activation was negated. We also found the intrinsic activation of apoptosis to be more important in comparison with the extrinsic activation. Additionally, intercepting myostatin signaling mitigated apoptosis activation. Ultimately, this research validated protective effects of myostatin inhibition in HR and identified potential mediators worth further investigation. Intercepting myostatin signaling did not inhibit ROS generation overall but mitigated cellular injury. In particular, intrinsic activation of apoptosis origination from mitochondria was alleviated. This was presumably mediated by decreased activation of p38 caused by the diminished kinase activity increase of MEK3/6. Overall, this work provides important insights into HR signaling in C2C12-Mstn−/− cells and could serve as basis for further research.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii46-ii46
Author(s):  
Andrew Lassman ◽  
Patrick Wen ◽  
Martin van den Bent ◽  
Scott Plotkin ◽  
Annemiek Walenkamp ◽  
...  

Abstract BACKGROUND Selinexor is an FDA-approved first-in-class, oral selective nuclear export inhibitor which forces nuclear retention of many tumor suppressor proteins. METHODS We conducted a phase 2 trial of selinexor monotherapy for adults with recurrent GBM including a surgical arm to explore intratumoral PK and 3 medical arms to optimize dosing. Prior treatment with radiotherapy and temozolomide was required; prior bevacizumab was exclusionary. The primary endpoint was 6-month progression-free survival (6mPFS) rate. RESULTS Selinexor administered ~2 hours pre-operatively yieleded average intratumoral concentration (136 nM, n=6) comparable to the in vitro IC50 (130 nM) from 7 primary human GBM cell lines. Among all 68 patients accrued to 3 medical arms (~85 mg BIW, n=24; 60 mg BIW, n=14; 80 mg QW, n=30), median age was 56 years (21–78). Median number of prior lines of therapies was 2 (1–7). At 80 mg QW, 28% patients were progression-free at the end of cycle 6; the 6mPFS was 17%; disese control rate by RANO was 37% (1 CR, 2 PRs, 7 SD) among 27 evaluable patients; responses were durable (median 11.1 months), and treatment lasted for 442, 547 and 1282 days in 3 responders, as of data lock, with one responder remaining on treatment off study; median overall survival was 10.2 months with 95% CI (7.0, 15.4). The ~85 mg BIW-schedule was abandoned due to poor tolerability. The related adverse events (all grades) in patients on ~85 mg BIW/60 mg BIW/80 mg QW were nausea (41.7%/64.3%/66.7%), fatigue (70.8%/71.4%/50.0%), neutropenia (29.2%/14.3%/33.3%), decreased appetite (45.8%/71.4%/26.7%), thrombocytopenia (66.7%/28.6%/23.3%) and weight loss (16.7%,/42.9%/6.7%). CONCLUSION Selinexor monotherapy demonstrated encouraging intratumoral penetration and efficacy, with durable disease control in rGBM. Monotherapy dose at 80 mg QW is recommended for further development in rGBM. A phase 1/2 study of combination therapy for newly diagnosed or rGBM has been initiated (NCT04421378).


Sign in / Sign up

Export Citation Format

Share Document