scholarly journals The origin recognition core complex regulates dendrite and spine development in postmitotic neurons

2005 ◽  
Vol 170 (4) ◽  
pp. 527-535 ◽  
Author(s):  
Zhen Huang ◽  
Keling Zang ◽  
Louis F. Reichardt

The origin recognition complex (ORC) ensures exactly one round of genome replication per cell cycle through acting as a molecular switch that precisely controls the assembly, firing, and inactivation of the replication initiation machinery. Recent data indicate that it may also coordinate the processes of mitosis and cytokinesis and ensure the proper distribution of replicated genome to daughter cells. We have found that the ORC core subunits are highly expressed in the nervous system. They are selectively localized to the neuronal somatodendritic compartment and enriched in the membrane fraction. siRNA knockdown of ORC subunits dramatically reduced dendritic branch formation and severely impeded dendritic spine emergence. Expression of ORC ATPase motif mutants enhanced the branching of dendritic arbors. The ORC core complex thus appears to have a novel role in regulating dendrite and dendritic spine development in postmitotic neurons.

Author(s):  
Y. Hu ◽  
A. Tareen ◽  
Y-J. Sheu ◽  
W. T. Ireland ◽  
C. Speck ◽  
...  

AbstractDNA replication in eukaryotic cells initiates from chromosomal locations, called replication origins, that bind the Origin Recognition Complex (ORC) prior to S phase. Origin establishment is guided by well-defined DNA sequence motifs in Saccharomyces cerevisiae and some other budding yeasts, but most eukaryotes lack sequence-specific origins. At present, the mechanistic and evolutionary reasons for this difference are unclear. A 3.9 Å structure of S. cerevisiae ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) bound to origin DNA revealed, among other things, that a loop within Orc2 inserts into a DNA minor groove and an α-helix within Orc4 inserts into a DNA major groove1. We show that this Orc4 α-helix mediates the sequence-specificity of origins in S. cerevisiae. Specifically, mutations were identified within this α-helix that alter the sequence-dependent activity of individual origins as well as change global genomic origin firing patterns. This was accomplished using a massively parallel origin selection assay analyzed using a custom mutual-information-based modeling approach and a separate analysis of whole-genome replication profiling and statistics. Interestingly, the sequence specificity of DNA replication initiation, as mediated by the Orc4 α-helix, has evolved in close conjunction with the gain of ORC-Sir4-mediated gene silencing and the loss of RNA interference.


2001 ◽  
Vol 21 (17) ◽  
pp. 5767-5777 ◽  
Author(s):  
Amit Vas ◽  
Winnie Mok ◽  
Janet Leatherwood

ABSTRACT Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G2 and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.


1997 ◽  
Vol 17 (2) ◽  
pp. 553-563 ◽  
Author(s):  
L Zou ◽  
J Mitchell ◽  
B Stillman

The CDC45 gene of Saccharomyces cerevisiae was isolated by complementation of the cold-sensitive cdc45-1 mutant and shown to be essential for cell viability. Although CDC45 genetically interacts with a group of MCM genes (CDC46, CDC47, and CDC54), the predicted sequence of its protein product reveals no significant sequence similarity to any known Mcm family member. Further genetic characterization of the cdc45-1 mutant demonstrated that it is synthetically lethal with orc2-1, mcm2-1, and mcm3-1. These results not only reveal a functional connection between the origin recognition complex (ORC) and Cdc45p but also extend the CDC45-MCM genetic interaction to all known MCM family members that were shown to be involved in replication initiation. Initiation of DNA replication in cdc45-1 cells was defective, causing a delayed entry into S phase at the nonpermissive temperature, as well as a high plasmid loss rate which could be suppressed by tandem copies of replication origins. Furthermore, two-dimensional gels directly showed that chromosomal origins fired less frequently in cdc45-1 cells at the nonpermissive temperature. These findings suggest that Cdc45p, ORC, and Mcm proteins act in concert for replication initiation throughout the genome.


Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1053-1062 ◽  
Author(s):  
Andrew Dillin ◽  
Jasper Rine

Origin recognition complex (ORC) is a six subunit complex that functions as the replication initiator and is required for silencing the HML and HMR loci in the yeast Saccharomyces cerevisiae. The roles of ORC5 in replication initiation and silencing were investigated to determine whether the two roles were mechanistically coincident or separable. Some spontaneous revertants of orc5-1 were functional for replication initiation, but not silencing. Other alleles of ORC5 were obtained that were nonfunctional for replication initiation, but fully competent for silencing. The two types of alleles, when put in the same cell, complemented, establishing two separable functions for ORC5. These data implied that replication initiation at HMR-E was not required for silencing. The data were consistent with a model in which different ORC species functioned at different origins within the genome and that only one Orc5p subunit functioned at any given origin.


2020 ◽  
Author(s):  
Matt J. Jaremko ◽  
Kin Fan On ◽  
Dennis R. Thomas ◽  
Bruce Stillman ◽  
Leemor Joshua-Tor

AbstractGenome replication is initiated from specific origin sites established by dynamic events. The Origin Recognition Complex (ORC) is necessary for orchestrating the initiation process by binding to origin DNA, recruiting CDC6, and assembling the MCM replicative helicase on DNA. Here we report five cryoEM structures of the human ORC (HsORC) that illustrate the native flexibility of the complex. The absence of ORC1 revealed a compact, stable complex of ORC2-5. Introduction of ORC1 opens the complex into several dynamic conformations. Two structures revealed dynamic movements of the ORC1 AAA+ and ORC2 winged-helix domains that likely impact DNA incorporation into the ORC core. Additional twist and pinch motions were observed in an open ORC conformation revealing a hinge at the ORC5·3 interface that may facilitate ORC binding to DNA. Finally, a structure of ORC was determined with endogenous DNA bound in the core revealing important differences between human and yeast origin recognition.


2006 ◽  
Vol 26 (5) ◽  
pp. 1955-1966 ◽  
Author(s):  
Kristopher H. McConnell ◽  
Philipp Müller ◽  
Catherine A. Fox

ABSTRACT The HMR-E silencer is a DNA element that directs the formation of silent chromatin at the HMR a locus in Saccharomyces cerevisiae. Sir1p is one of four Sir proteins required for silent chromatin formation at HMR a. Sir1p functions by binding the origin recognition complex (ORC), which binds to HMR-E, and recruiting the other Sir proteins (Sir2p to -4p). ORCs also bind to hundreds of nonsilencer positions distributed throughout the genome, marking them as replication origins, the sites for replication initiation. HMR-E also acts as a replication origin, but compared to many origins in the genome, it fires extremely inefficiently and late during S phase. One postulate to explain this observation is that ORC's role in origin firing is incompatible with its role in binding Sir1p and/or the formation of silent chromatin. Here we examined a mutant HMR-E silencer and fusions between robust replication origins and HMR-E for HMR a silencing, origin firing, and replication timing. Origin firing within HMR a and from the HMR-E silencer itself could be significantly enhanced, and the timing of HMR a replication during an otherwise normal S phase advanced, without a substantial reduction in SIR1-dependent silencing. However, although the robust origin/silencer fusions silenced HMR a quite well, they were measurably less effective than a comparable silencer containing HMR-E's native ORC binding site.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1697-1707 ◽  
Author(s):  
M.F. Pflumm ◽  
M.R. Botchan

The origin recognition complex (ORC) is a six subunit complex required for eukaryotic DNA replication initiation and for silencing of the heterochromatic mating type loci in Saccharomyces cerevisiae. Our discovery of the Drosophila ORC complex concentrated in the centric heterochromatin of mitotic cells in the early embryo and its interactions with heterochromatin protein 1 (HP-1) lead us to speculate that ORC may play some general role in chromosomal folding. To explore the role of ORC in chromosomal condensation, we have identified a mutant of subunit 5 of the Drosophila melanogaster origin recognition complex (Orc5) and have characterized the phenotypes of both the Orc5 and the previously identified Orc2 mutant, k43. Both Orc mutants died at late larval stages and surprisingly, despite a reduced number of S-phase cells, an increased fraction of cells were also detected in mitosis. For this latter population of cells, Orc mutants arrest in a defective metaphase with shorter and thicker chromosomes that fail to align at the metaphase plate within a poorly assembled mitotic spindle. In addition, sister chromatid cohesion was frequently lost. PCNA and MCM4 mutants had similar phenotypes to Orc mutants. We propose that DNA replication defects trigger the mitotic arrest, due to the fact that frequent fragmentation was observed. Thus, cells have a mitotic checkpoint that senses chromosome integrity. These studies also suggest that the density of functional replication origins and completion of S phase are requirements for proper chromosomal condensation.


2018 ◽  
Vol 200 (17) ◽  
Author(s):  
Katharina Ludt ◽  
Jörg Soppa

ABSTRACT Replication initiation in archaea involves a protein named ORC, Cdc6, or ORC1/Cdc6, which is homologous to the eukaryotic origin recognition complex (ORC) proteins and to the eukaryotic Cdc6. Archaeal replication origins are comprised of origin repeat regions and adjacent orc genes. Some archaea contain a single replication origin and a single orc gene, while others have more than one of each. Haloferax volcanii is exceptional because it contains, in total, six replication origins on three chromosomes and 16 orc genes. Phylogenetic trees were constructed that showed that orc gene duplications occurred at very different times in evolution. To unravel the influence of the ORC proteins on chromosome copy number and cellular fitness, it was attempted to generate deletion mutants of all 16 genes. A total of 12 single-gene deletion mutants could be generated, and only three orc gene turned out to be essential. For one gene, the deletion analysis failed. Growth analyses revealed that no deletion mutant had a growth defect, but some had a slight growth advantage compared to the wild type. Quantification of the chromosome copy numbers in the deletion mutants showed that all 12 ORC proteins influenced the copy numbers of one, two, or all three chromosomes. The lack of an ORC led to an increase or decrease of chromosome copy number. Therefore, chromosome copy numbers in Hfx. volcanii are regulated by an intricate network of ORC proteins. This is in contrast to other archaea, in which ORC proteins typically bind specifically to the adjacent origin. IMPORTANCE The core origins of archaea are comprised of a repeat region and an adjacent gene for an origin recognition complex (ORC) protein, which is homologous to eukaryotic ORC proteins. Haloferax volcanii is exceptional because it contains six replication origins on three chromosomes and an additional 10 orc genes that are not adjacent to an origin. This unique ORC protein repertoire was used to unravel the importance of core origin orc genes and of origin-remote orc genes. Remarkably, all ORC proteins influenced the copy number of at least one chromosome. Some of them influenced those of all three chromosomes, showing that cross-regulation in trans exists in Hfx. volcanii. Furthermore, the evolution of the archaeal ORC protein family was analyzed.


Sign in / Sign up

Export Citation Format

Share Document