scholarly journals Separable Functions of ORC5 in Replication Initiation and Silencing in Saccharomyces cerevisiae

Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1053-1062 ◽  
Author(s):  
Andrew Dillin ◽  
Jasper Rine

Origin recognition complex (ORC) is a six subunit complex that functions as the replication initiator and is required for silencing the HML and HMR loci in the yeast Saccharomyces cerevisiae. The roles of ORC5 in replication initiation and silencing were investigated to determine whether the two roles were mechanistically coincident or separable. Some spontaneous revertants of orc5-1 were functional for replication initiation, but not silencing. Other alleles of ORC5 were obtained that were nonfunctional for replication initiation, but fully competent for silencing. The two types of alleles, when put in the same cell, complemented, establishing two separable functions for ORC5. These data implied that replication initiation at HMR-E was not required for silencing. The data were consistent with a model in which different ORC species functioned at different origins within the genome and that only one Orc5p subunit functioned at any given origin.

2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


1996 ◽  
Vol 16 (12) ◽  
pp. 6775-6782 ◽  
Author(s):  
C F Hardy ◽  
A Pautz

DNA replication initiates from specific chromosomal sites called origins, and in the budding yeast Saccharomyces cerevisiae these sites are occupied by the origin recognition complex (ORC). Dbf4p is proposed to play a role in targeting the G1/S kinase Cdc7p to initiation complexes late in G1. We report that Dbf4p may also recruit Cdc5p to origin complexes. Cdc5p is a member of the Polo family of kinases that is required for the completion of mitosis. Cdc5p and Cdc7p each interact with a distinct domain of Dbf4p. cdc5-1 mutants have a plasmid maintenance defect that can be suppressed by the addition of multiple origins. cdc5-1 orc2-1 double mutants are synthetically lethal. Levels of Cdc5p were found to be cell cycle regulated and peaked in G2/M. These results suggest a role for Cdc5p and possibly Polo-like kinases at origin complexes.


2001 ◽  
Vol 21 (8) ◽  
pp. 2790-2801 ◽  
Author(s):  
James F. Theis ◽  
Carol S. Newlon

ABSTRACT While many of the proteins involved in the initiation of DNA replication are conserved between yeasts and metazoans, the structure of the replication origins themselves has appeared to be different. As typified by ARS1, replication origins inSaccharomyces cerevisiae are <150 bp long and have a simple modular structure, consisting of a single binding site for the origin recognition complex, the replication initiator protein, and one or more accessory sequences. DNA replication initiates from a discrete site. While the important sequences are currently less well defined, metazoan origins appear to be different. These origins are large and appear to be composed of multiple, redundant elements, and replication initiates throughout zones as large as 55 kb. In this report, we characterize two S. cerevisiae replication origins, ARS101 and ARS310, which differ from the paradigm. These origins contain multiple, redundant binding sites for the origin recognition complex. Each binding site must be altered to abolish origin function, while the alteration of a single binding site is sufficient to inactivate ARS1. This redundant structure may be similar to that seen in metazoan origins.


2005 ◽  
Vol 25 (14) ◽  
pp. 5920-5932 ◽  
Author(s):  
Patrick J. Lynch ◽  
Hunter B. Fraser ◽  
Elena Sevastopoulos ◽  
Jasper Rine ◽  
Laura N. Rusche

ABSTRACT In Saccharomyces cerevisiae, Sum1p is a promoter-specific repressor. A single amino acid change generates the mutant Sum1-1p, which causes regional silencing at new loci where wild-type Sum1p does not act. Thus, Sum1-1p is a model for understanding how the spreading of repressive chromatin is regulated. When wild-type Sum1p was targeted to a locus where mutant Sum1-1p spreads, wild-type Sum1p did not spread as efficiently as mutant Sum1-1p did, despite being in the same genomic context. Thus, the SUM1-1 mutation altered the ability of the protein to spread. The spreading of Sum1-1p required both an enzymatically active deacetylase, Hst1p, and the N-terminal tail of histone H4, consistent with the spreading of Sum1-1p involving sequential modification of and binding to histone tails, as observed for other silencing proteins. Furthermore, deletion of the N-terminal tail of H4 caused Sum1-1p to return to loci where wild-type Sum1p acts, consistent with the SUM1-1 mutation increasing the affinity of the protein for H4 tails. These results imply that the spreading of repressive chromatin proteins is regulated by their affinities for histone tails. Finally, this study uncovered a functional connection between wild-type Sum1p and the origin recognition complex, and this relationship also contributes to mutant Sum1-1p localization.


2001 ◽  
Vol 21 (17) ◽  
pp. 5767-5777 ◽  
Author(s):  
Amit Vas ◽  
Winnie Mok ◽  
Janet Leatherwood

ABSTRACT Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G2 and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.


1991 ◽  
Vol 11 (11) ◽  
pp. 5648-5659
Author(s):  
F J McNally ◽  
J Rine

Copies of the mating-type genes are present at three loci on chromosome III of the yeast Saccharomyces cerevisiae. The genes at the MAT locus are transcribed, whereas the identical genes at the silent loci, HML and HMR, are not transcribed. Several genes, including the four SIR genes, and two sites, HMR-E and HMR-I, are required for repression of transcription at the HMR locus. Three elements have been implicated in the function of the HMR-E silencer: a binding site for the RAP1 protein, a binding site for the ABF1 protein, and an 11-bp consensus sequence common to nearly all autonomously replicating sequence (ARS) elements (putative origins of DNA replication). RAP1 and ABF1 binding sites of different sequence than those found at HMR-E were joined with an 11-bp ARS consensus sequence to form a synthetic silencer. The synthetic silencer was able to repress transcription of the HMRa1 gene, confirming that binding sites for RAP1 and ABF1 and the 11-bp ARS consensus sequence were the functional components of the silencer in vivo. Mutations in the ABF1 binding site or in the ARS consensus sequence of the synthetic silencer caused nearly complete derepression of transcription at HMR. The ARS consensus sequence mutation also eliminated the ARS activity of the synthetic silencer. These data suggested that replication initiation at the HMR-E silencer was required for establishment of the repressed state at the HMR locus.


2020 ◽  
Vol 48 (19) ◽  
pp. 11146-11161
Author(s):  
Naining Xu ◽  
Yingying You ◽  
Changdong Liu ◽  
Maxim Balasov ◽  
Lee Tung Lun ◽  
...  

Abstract The six-subunit origin recognition complex (ORC), a DNA replication initiator, defines the localization of the origins of replication in eukaryotes. The Orc6 subunit is the smallest and the least conserved among ORC subunits. It is required for DNA replication and essential for viability in all species. Orc6 in metazoans carries a structural homology with transcription factor TFIIB and can bind DNA on its own. Here, we report a solution structure of the full-length human Orc6 (HsOrc6) alone and in a complex with DNA. We further showed that human Orc6 is composed of three independent domains: N-terminal, middle and C-terminal (HsOrc6-N, HsOrc6-M and HsOrc6-C). We also identified a distinct DNA-binding domain of human Orc6, named as HsOrc6-DBD. The detailed analysis of the structure revealed novel amino acid clusters important for the interaction with DNA. Alterations of these amino acids abolish DNA-binding ability of Orc6 and result in reduced levels of DNA replication. We propose that Orc6 is a DNA-binding subunit of human/metazoan ORC and may play roles in targeting, positioning and assembling the functional ORC at the origins.


Sign in / Sign up

Export Citation Format

Share Document