scholarly journals 12R-lipoxygenase deficiency disrupts epidermal barrier function

2007 ◽  
Vol 177 (1) ◽  
pp. 173-182 ◽  
Author(s):  
Nikolas Epp ◽  
Gerhard Fürstenberger ◽  
Karsten Müller ◽  
Silvia de Juanes ◽  
Michael Leitges ◽  
...  

12R-lipoxygenase (12R-LOX) and the epidermal LOX-3 (eLOX-3) constitute a novel LOX pathway involved in terminal differentiation in skin. This view is supported by recent studies showing that inactivating mutations in 12R-LOX and eLOX-3 are linked to the development of autosomal recessive congenital ichthyosis. We show that 12R-LOX deficiency in mice results in a severe impairment of skin barrier function. Loss of barrier function occurs without alterations in proliferation and stratified organization of the keratinocytes, but is associated with ultrastructural anomalies in the upper granular layer, suggesting perturbance of the assembly/extrusion of lamellar bodies. Cornified envelopes from skin of 12R-LOX–deficient mice show increased fragility. Lipid analysis demonstrates a disordered composition of ceramides, in particular a decrease of ester-bound ceramide species. Moreover, processing of profilaggrin to monomeric filaggrin is impaired. This study indicates that the 12R-LOX–eLOX-3 pathway plays a key role in the process of epidermal barrier acquisition by affecting lipid metabolism, as well as protein processing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tom Macleod ◽  
Anna Berekmeri ◽  
Charlie Bridgewood ◽  
Martin Stacey ◽  
Dennis McGonagle ◽  
...  

The skin barrier would not function without IL-1 family members, but their physiological role in the immunological aspects of skin barrier function are often overlooked. This review summarises the role of IL-1 family cytokines (IL-1α, IL-1β, IL-1Ra, IL-18, IL-33, IL-36α, IL-36β, IL-36γ, IL-36Ra, IL-37 and IL-38) in the skin. We focus on novel aspects of their interaction with commensals and pathogens, the important impact of proteases on cytokine activity, on healing responses and inflammation limiting mechanisms. We discuss IL-1 family cytokines in the context of IL-4/IL-13 and IL-23/IL-17 axis-driven diseases and highlight consequences of human loss/gain of function mutations in activating or inhibitory pathway molecules. This review highlights recent findings that emphasize the importance of IL-1 family cytokines in both physiological and pathological cutaneous inflammation and emergent translational therapeutics that are helping further elucidate these cytokines.



Life ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 651
Author(s):  
Daniel Maroto-Morales ◽  
Trinidad Montero-Vilchez ◽  
Salvador Arias-Santiago

Psoriasis is a chronic multi-systemic inflammatory disease that affects the epidermal barrier. Emollients can be used as a coadjutant therapy for psoriasis management, but little is known about how the epidermal barrier function in psoriatic patients is modified by moisturizers. The objective of this study is to evaluate the effect of Vaseline jelly and a water-based formula on epidermal barrier function in psoriatic patients. Thirty-one patients with plaque-type psoriasis and thirty-one gender and age-matched healthy controls were enrolled in the study. Temperature, transepidermal water loss (TEWL), stratum corneum hydration (SCH), pH, elasticity and the erythema index were measured using non-invasive tools before and after applying Vaseline jelly and a water-based formula. TEWL was higher in psoriatic plaques than uninvolved psoriatic skin (13.23 vs. 8.54 g·m−2·h−1; p < 0.001). SCH was lower in psoriatic plaques than uninvolved psoriatic skin and healthy skin (13.44 vs. 30.55 vs. 30.90 arbitrary units (AU), p < 0.001). In psoriatic plaques, TEWL decreased by 5.59 g·m−2·h−1 (p = 0.001) after applying Vaseline Jelly, while it increased by 3.60 g·m−2·h−1 (p = 0.006) after applying the water-based formula. SCH increased by 9.44 AU after applying the water-based formula (p = 0.003). The use of emollients may improve epidermal barrier function in psoriatic patients. TEWL is decreased by using Vaseline, and SCH is increased by using the water-based formula.



2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Mary Beth Hogan ◽  
Kathy Peele ◽  
Nevin W. Wilson

Atopic dermatitis can be due to a variety of causes from nonatopic triggers to food allergy. Control of egress of water and protection from ingress of irritants and allergens are key components of cutaneous barrier function. Current research suggests that a degraded barrier function of the skin allows the immune system inappropriate access to environmental allergens. Epidermal aeroallergen exposure may allow sensitization to allergen possibly initiating the atopic march. Further research into connections between epidermal barrier function and possible allergen sensitization will be important to undertake. Future clinical trials focused on skin barrier protection may be of value as a possible intervention in prevention of the initiation of the atopic march.



2021 ◽  
Vol 10 (4) ◽  
pp. 888
Author(s):  
Jose-Pablo Serrano-Serra ◽  
Trinidad Montero-Vilchez ◽  
Agustin Buendia-Eisman ◽  
Salvador Arias-Santiago

Tattoos are a current trend, but their impact on skin homeostasis and epidermal barrier function is not well known. So, the aims of this study are (1) to investigate epidermal barrier function and skin homeostasis in skin with permanent tattoos, adhesive temporary tattoos and non-tattooed skin, and (2) to analyze the effect of petrolatum on skin with permanent and adhesive tattoos. In total, 67 tattoos were enrolled (34 permanent tattoos and 33 adhesive tattoos). Temperature, transepidermal water loss (TEWL), stratum corneum hydration (SCH), erythema and total antioxidant capacity (TAC) were measured in skin with permanent tattoos, adhesive tattoos and non-tattooed skin before and after petrolatum application. The temperature was lower (30.47 °C vs. 31.01 °C; p = 0.001) on skin with permanent tattoos than non-tattooed skin, while SCH (48.24 Arbitrary Units (AU) vs. 44.15 AU; p = 0.008) was higher. Skin with adhesive tattoos showed lower temperature, SCH (21.19 AU vs. 41.31 AU; p < 0.001) and TAC (1.27 microcoulombs (uC) vs. 3.48 uC; p < 0.001), and higher TEWL (8.65 g/h/m2 vs. 6.99 g/h/m2; p = 0.003), than non-tattooed skin. After petrolatum application, the temperature decreased on skin with permanent tattoos, and TEWL and SCH decreased on skin with adhesive tattoos. Adhesive tattoos may affect skin barrier function, while permanent tattoos may have a lower impact. Tattooed and non-tattooed skin responds in different ways to moisturizers.



2018 ◽  
Vol 15 (4) ◽  
pp. 76-82
Author(s):  
E V Smolnikov ◽  
A O Litovkina ◽  
O G Elisyutina ◽  
E S Fedenko

Atopic dermatitis is the common chronic inflammatory disorder, characterized by skin irritation, itch, often accompanied by respiratory allergy symptoms - allergic rhinitis and bronchial asthma. AD prevalence varies between 15-30% in children and 2-14% in adults in industrialized countries. The pathophysiology of atopic dermatitis is complex encompassing genetic predisposition to allergy, dysregulation of innate and adaptive immunity and environmental risk factors. Recent genetic and molecular research has focused interest on skin barrier function and it’s role in AD pathogenesis. It has been established that disruption of the epidermal barrier leads to increased permeability of the epidermis, pathological inflammation in the skin, and percutaneous sensitization to allergens. Thus, most novel treatment strategies seek to target immune therapy, repair of epidermal barrier and prevention of sensibilization and atopic march. The article is devoted to skin barrier function disruption in AD and beneficial role of emollients in skin care; clinical case is presented.



2021 ◽  
Vol 22 (16) ◽  
pp. 8403
Author(s):  
Leszek Blicharz ◽  
Lidia Rudnicka ◽  
Joanna Czuwara ◽  
Anna Waśkiel-Burnat ◽  
Mohamad Goldust ◽  
...  

Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function.





Sign in / Sign up

Export Citation Format

Share Document