scholarly journals Histone H3 lysine 56 acetylation by Rtt109 is crucial for chromosome positioning

2008 ◽  
Vol 183 (4) ◽  
pp. 641-651 ◽  
Author(s):  
Shin-ichiro Hiraga ◽  
Sotirios Botsios ◽  
Anne D. Donaldson

Correct intranuclear organization of chromosomes is crucial for many genome functions, but the mechanisms that position chromatin are not well understood. We used a layered screen to identify Saccharomyces cerevisiae mutants defective in telomere localization to the nuclear periphery. We find that events in S phase are crucial for correct telomere localization. In particular, the histone chaperone Asf1 functions in telomere peripheral positioning. Asf1 stimulates acetylation of histone H3 lysine 56 (H3K56) by the histone acetyltransferase Rtt109. Analysis of rtt109Δ and H3K56 mutants suggests that the acetylation/deacetylation cycle of the H3K56 residue is required for proper telomere localization. The function of H3K56 acetylation in localizing chromosome domains is not confined to telomeres because deletion of RTT109 also prevents the correct peripheral localization of a newly identified S. cerevisiae “chromosome-organizing clamp” locus. Because chromosome positioning is subject to epigenetic inheritance, H3K56 acetylation may mediate correct chromosome localization by facilitating accurate transmission of chromatin status during DNA replication.

2021 ◽  
Author(s):  
Thelma M. Escobar ◽  
Jia-Ray Yu ◽  
Sanxiong Liu ◽  
Kimberly Lucero ◽  
Nikita Vasilyev ◽  
...  

AbstractThe epigenetic process safeguards cell identity during cell division through the inheritance of appropriate gene expression profiles. We demonstrated previously that parental nucleosomes are inherited by the same chromatin domains during DNA replication only in the case of repressed chromatin. We now show that this specificity is conveyed by NPM1, a histone H3/H4 chaperone. Proteomic analyses of late S-phase chromatin revealed NPM1 in association with both H3K27me3, an integral component of facultative heterochromatin and MCM2, an integral component of the DNA replication machinery; moreover NPM1 interacts directly with PRC2 and with MCM2. Given that NPM1 is essential, the inheritance of repressed chromatin domains was examined anew using mESCs expressing an auxin-degradable version of endogenous NPM1. Upon NPM1 degradation, cells accumulated in S-phase of the cell-cycle and parental nucleosome inheritance from repressed chromatin domains was markedly compromised. Appropriate inheritance required the NPM1 acidic patches that function in chaperone activity, pointing to NPM1 being integral to the epigenetic process.One-Sentence SummaryThe histone H3/H4 chaperone, NPM1, fosters epigenetic inheritance from parental repressed chromatin during DNA replication.


2020 ◽  
Author(s):  
Christophe de La Roche Saint-André ◽  
Vincent Géli

AbstractDNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. Interestingly, orc5-1 set1Δ is sensitive to the lack of RNase H activity while a reduction of histone levels is able to counterbalance the loss of Set1. We propose that the recently described Set1-dependent mitigation of transcription-replication conflicts becomes critical for growth when the replication forks accelerate due to decreased origin firing in the orc5-1 background. Furthermore, we show that an increase of reactive oxygen species (ROS) levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.Author summaryDNA replication, that ensures the duplication of the genetic material, starts at discrete sites, termed origins, before proceeding at replication forks whose progression is carefully controlled in order to avoid conflicts with the transcription of genes. In eukaryotes, DNA replication occurs in the context of chromatin, a structure in which DNA is wrapped around proteins, called histones, that are subjected to various chemical modifications. Among them, the methylation of the lysine 4 of histone H3 (H3K4) is carried out by Set1 in Saccharomyces cerevisiae, specifically at transcribed genes. We report that, when the replication fork accelerates in response to a reduction of active origins, the absence of Set1 leads to accumulation of DNA damage. Because H3K4 methylation was recently shown to slow down replication at transcribed genes, we propose that the Set1-dependent becomes crucial to limit the occurrence of conflicts between replication and transcription caused by replication fork acceleration. In agreement with this model, stabilization of transcription-dependent structures or reduction histone levels, to limit replication fork velocity, respectively exacerbates or moderates the effect of Set1 loss. Last, but not least, we show that the oxidative stress associated to DNA damage is partly responsible for cell lethality.


1992 ◽  
Vol 12 (11) ◽  
pp. 5249-5259 ◽  
Author(s):  
H Xu ◽  
U J Kim ◽  
T Schuster ◽  
M Grunstein

Histone mRNA synthesis is tightly regulated to S phase of the yeast Saccharomyces cerevisiae cell cycle as a result of transcriptional and posttranscriptional controls. Moreover, histone gene transcription decreases rapidly if DNA replication is inhibited by hydroxyurea or if cells are arrested in G1 by the mating pheromone alpha-factor. To identify the transcriptional controls responsible for cycle-specific histone mRNA synthesis, we have developed a selection for mutations which disrupt this process. Using this approach, we have isolated five mutants (hpc1, hpc2, hpc3, hpc4, and hpc5) in which cell cycle regulation of histone gene transcription is altered. All of these mutations are recessive and belong to separate complementation groups. Of these, only one (hpc1) falls in one of the three complementation groups identified previously by other means (M. A. Osley and D. Lycan, Mol. Cell. Biol. 7:4204-4210, 1987), indicating that at least seven different genes are involved in the cell cycle-specific regulation of histone gene transcription. hpc4 is unique in that derepression occurs only in the presence of hydroxyurea but not alpha-factor, suggesting that at least one of the regulatory factors is specific to histone gene transcription after DNA replication is blocked. One of the hpc mutations (hpc2) suppresses delta insertion mutations in the HIS4 and LYS2 loci. This effect allowed the cloning and sequence analysis of HPC2, which encodes a 67.5-kDa, highly charged basic protein.


2006 ◽  
Vol 5 (10) ◽  
pp. 1780-1787 ◽  
Author(s):  
Jeffrey Linger ◽  
Jessica K. Tyler

ABSTRACT The eukaryotic genome is packaged together with histone proteins into chromatin following DNA replication. Recent studies have shown that histones can also be assembled into chromatin independently of DNA replication and that this dynamic exchange of histones may be biased toward sites undergoing transcription. Here we show that epitope-tagged histone H4 can be incorporated into nucleosomes throughout the budding yeast (Saccharomyces cerevisiae) genome regardless of the phase of the cell cycle, the transcriptional status, or silencing of the region. Direct comparisons reveal that the amount of histone incorporation that occurs in G1-arrested cells is similar to that occurring in cells undergoing DNA replication. Additionally, we show that this histone incorporation is not dependent on the histone H3/H4 chaperones CAF-1, Asf1, and Hir1 individually. This study demonstrates that DNA replication and transcription are not necessary prerequisites for histone exchange in budding yeast, indicating that chromatin is more dynamic than previously thought.


2020 ◽  
Author(s):  
Seiji Tanaka

SUMMARYDNA replication in eukaryotes is a multi-step process that consists of three main reactions: helicase loading (licensing), helicase activation (firing), and nascent DNA synthesis (elongation). Although the contributions of some chromatin regulatory factors in the licensing and elongation reaction have been determined, their functions in the firing reaction remain elusive. In the budding yeast Saccharomyces cerevisiae, Sld3, Sld7, and Cdc45 (3-7-45) are rate-limiting in the firing reaction and simultaneous overexpression of 3-7-45 causes untimely activation of late and dormant replication origins. Here we found that 3-7-45 overexpression not only activated dormant origins in the silenced locus, HMLα, but also exerted an anti-silencing effect at this locus. For these, interaction between Sld3 and Esa1, a conserved histone acetyltransferase, was responsible. Moreover, the Sld3–Esa1 interaction was required for untimely activation of late origins. These results reveal the Sld3–Esa1 interaction as a novel level of regulation in the firing reaction.


1994 ◽  
Vol 14 (5) ◽  
pp. 3524-3534
Author(s):  
I Collins ◽  
C S Newlon

Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.


1997 ◽  
Vol 17 (6) ◽  
pp. 3315-3322 ◽  
Author(s):  
P A Tavormina ◽  
Y Wang ◽  
D J Burke

Checkpoints prevent inaccurate chromosome segregation by inhibiting cell division when errors in mitotic processes are encountered. We used a temperature-sensitive mutation, dbf4, to examine the requirement for DNA replication in establishing mitotic checkpoint arrest. We used gamma-irradiation to induce DNA damage and hydroxyurea to limit deoxyribonucleotides in cells deprived of DBF4 function to investigate the requirement for DNA replication in DNA-responsive checkpoints. In the absence of DNA replication, mitosis was not inhibited by these treatments, which normally activate the DNA damage and DNA replication checkpoints. Our results support a model that indicates that the assembly of replication structures is critical for cells to respond to defects in DNA metabolism. We show that activating the spindle checkpoint with nocodazole does not require prior progression through S phase but does require a stable kinetochore.


1994 ◽  
Vol 14 (5) ◽  
pp. 3524-3534 ◽  
Author(s):  
I Collins ◽  
C S Newlon

Autonomously replicating sequence (ARS) elements are identified by their ability to promote high-frequency transformation and extrachromosomal replication of plasmids in the yeast Saccharomyces cerevisiae. Six of the 14 ARS elements present in a 200-kb region of Saccharomyces cerevisiae chromosome III are mitotic chromosomal replication origins. The unexpected observation that eight ARS elements do not function at detectable levels as chromosomal replication origins during mitotic growth suggested that these ARS elements may function as chromosomal origins during premeiotic S phase. Two-dimensional agarose gel electrophoresis was used to map premeiotic replication origins in a 100-kb segment of chromosome III between HML and CEN3. The pattern of origin usage in premeiotic S phase was identical to that in mitotic S phase, with the possible exception of ARS308, which is an inefficient mitotic origin associated with CEN3. CEN3 was found to replicate during premeiotic S phase, demonstrating that the failure of sister chromatids to disjoin during the meiosis I division is not due to unreplicated centromeres. No origins were found in the DNA fragments without ARS function. Thus, in both mitosis and meiosis, chromosomal replication origins are coincident with ARS elements but not all ARS elements have chromosomal origin function. The efficiency of origin use and the patterns of replication termination are similar in meiosis and in mitosis. DNA replication termination occurs over a broad distance between active origins.


2004 ◽  
Vol 78 (22) ◽  
pp. 12566-12575 ◽  
Author(s):  
William Stedman ◽  
Zhong Deng ◽  
Fang Lu ◽  
Paul M. Lieberman

ABSTRACT The viral genome of Kaposi's sarcoma-associated herpesvirus (KSHV) persists as an extrachromosomal plasmid in latently infected cells. The KSHV latency-associated nuclear antigen (LANA) stimulates plasmid maintenance and DNA replication by binding to an ∼150-bp region within the viral terminal repeats (TR). We have used chromatin immunoprecipitation assays to demonstrate that LANA binds specifically to the replication origin sequence within the KSHV TR in latently infected cells. The latent replication origin within the TR was also bound by LANA-associated proteins CBP, double-bromodomain-containing protein 2 (BRD2), and the origin recognition complex 2 protein (ORC2) and was enriched in hyperacetylated histones H3 and H4 relative to other regions of the latent genome. Cell cycle analysis indicated that the minichromosome maintenance complex protein, MCM3, bound TR in late-G1/S-arrested cells, which coincided with the loss of histone H3 K4 methylation. Micrococcal nuclease studies revealed that TRs are embedded in a highly ordered nucleosome array that becomes disorganized in late G1/S phase. ORC binding to TR was LANA dependent when reconstituted in transfected plasmids. DNA affinity purification confirmed that LANA, CBP, BRD2, and ORC2 bound TR specifically and identified the histone acetyltransferase HBO1 (histone acetyltransferase binding to ORC1) as a potential TR binding protein. Disruption of ORC2, MCM5, and HBO1 expression by small interfering RNA reduced LANA-dependent DNA replication of TR-containing plasmids. These findings are the first demonstration that cellular replication and origin licensing factors are required for KSHV latent cycle replication. These results also suggest that the KSHV latent origin of replication is a unique chromatin environment containing histone H3 hyperacetylation within heterochromatic tandem repeats.


2008 ◽  
Vol 28 (13) ◽  
pp. 4342-4353 ◽  
Author(s):  
Jeffrey Fillingham ◽  
Judith Recht ◽  
Andrea C. Silva ◽  
Bernhard Suter ◽  
Andrew Emili ◽  
...  

ABSTRACT Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Δ suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.


Sign in / Sign up

Export Citation Format

Share Document