scholarly journals The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly

2009 ◽  
Vol 185 (3) ◽  
pp. 459-473 ◽  
Author(s):  
Tadashi Makio ◽  
Leslie H. Stanton ◽  
Cheng-Chao Lin ◽  
David S. Goldfarb ◽  
Karsten Weis ◽  
...  

We have established that two homologous nucleoporins, Nup170p and Nup157p, play an essential role in the formation of nuclear pore complexes (NPCs) in Saccharomyces cerevisiae. By regulating their synthesis, we showed that the loss of these nucleoporins triggers a decrease in NPCs caused by a halt in new NPC assembly. Preexisting NPCs are ultimately lost by dilution as cells grow, causing the inhibition of nuclear transport and the loss of viability. Significantly, the loss of Nup170p/Nup157p had distinct effects on the assembly of different architectural components of the NPC. Nucleoporins (nups) positioned on the cytoplasmic face of the NPC rapidly accumulated in cytoplasmic foci. These nup complexes could be recruited into new NPCs after reinitiation of Nup170p synthesis, and may represent a physiological intermediate. Loss of Nup170p/Nup157p also caused core and nucleoplasmically positioned nups to accumulate in NPC-like structures adjacent to the inner nuclear membrane, which suggests that these nucleoporins are required for formation of the pore membrane and the incorporation of cytoplasmic nups into forming NPCs.

2014 ◽  
Vol 395 (5) ◽  
pp. 515-528 ◽  
Author(s):  
Benjamin Vollmer ◽  
Wolfram Antonin

Abstract Nuclear pore complexes mediate the transport between the cell nucleoplasm and cytoplasm. These 125 MDa structures are among the largest assemblies found in eukaryotes, built from proteins organized in distinct subcomplexes that act as building blocks during nuclear pore complex biogenesis. In this review, we focus on one of these subcomplexes, the Nup93 complex in metazoa and its yeast counterpart, the Nic96 complex. We discuss its essential function in nuclear pore complex assembly as a linker between the nuclear membrane and the central part of the pore and its various roles in nuclear transport processes and beyond.


1996 ◽  
Vol 7 (12) ◽  
pp. 1921-1937 ◽  
Author(s):  
R Murphy ◽  
J L Watkins ◽  
S R Wente

To identify and characterize novel factors required for nuclear transport, a genetic screen was conducted in the yeast Saccharomyces cerevisiae. Mutations that were lethal in combination with a null allele of the gene encoding the nucleoporin Nup100p were isolated using a colony-sectoring assay. Three complementation groups of gle (for GLFG lethal) mutants were identified. In this report, the characterization of GLE2 is detailed. GLE2 encodes a 40.5-kDa polypeptide with striking similarity to that of Schizosaccharomyces pombe RAE1. In indirect immunofluorescence and nuclear pore complex fractionation experiments, Gle2p was associated with nuclear pore complexes. Mutated alleles of GLE2 displayed blockage of polyadenylated RNA export; however, nuclear protein import was not apparently diminished. Immunofluorescence and thin-section electron microscopic analysis revealed that the nuclear pore complex and nuclear envelope structure was grossly perturbed in gle2 mutants. Because the clusters of herniated pore complexes appeared subsequent to the export block, the structural perturbations were likely indirect consequences of the export phenotype. Interestingly, a two-hybrid interaction was detected between Gle2p and Srp1p, the nuclear localization signal receptor, as well as Rip1p, a nuclear export signal-interacting protein. We propose that Gle2p has a novel role in mediating nuclear transport.


2009 ◽  
Vol 185 (3) ◽  
pp. 377-379 ◽  
Author(s):  
Michael Rexach

All nucleocytoplasmic traffic of macromolecules occurs through nuclear pore complexes (NPCs), which function as stents in the nuclear envelope to keep nuclear pores open but gated. Three studies in this issue (Flemming, D., P. Sarges, P. Stelter, A. Hellwig, B. Böttcher, and E. Hurt. 2009. J. Cell Biol. 185:387–395; Makio, T., L.H. Stanton, C.-C. Lin, D.S. Goldfarb, K. Weis, and R.W. Wozniak. 2009. J. Cell Biol. 185:459–491; Onishchenko, E., L.H. Stanton, A.S. Madrid, T. Kieselbach, and K. Weis. 2009. J. Cell Biol. 185:475–491) further our understanding of the NPC assembly process by reporting what happens when the supply lines of key proteins that provide a foundation for building these marvelous supramolecular structures are disrupted.


Author(s):  
Christopher L. Lord ◽  
Susan R. Wente

AbstractThe intricacy of nuclear pore complex (NPC) biogenesis imposes risks of failure that can cause defects in nuclear transport and nuclear envelope morphology, however, cellular mechanisms utilized to alleviate NPC assembly stress are not well-defined. In the budding yeast Saccharomyces cerevisiae, we demonstrate that NVJ1- and MDM1-enriched nuclear envelope (NE)-vacuole contacts increase when NPC assembly is compromised in several nup mutants, including nup116ΔGLFG cells. These interorganelle nucleus-vacuole junctions (NVJs) cooperate with lipid droplets to maintain viability and enhance NPC formation in assembly mutants. Additionally, NVJs function with ATG1 to promote vacuole-dependent remodeling in nup116ΔGLFG cells, which also correlates with proper NPC formation. Importantly, NVJs significantly improve the physiology of NPC assembly mutants, despite having only negligible effects when NPC biogenesis is unperturbed. Collectively, these results define how NE-vacuole interorganelle contacts coordinate responses to mitigate deleterious cellular effects caused by disrupted NPC assembly.SummaryHow cells respond to deleterious effects imposed by disrupted nuclear pore complex (NPC) assembly are not well-defined. The authors demonstrate nuclear envelope-vacuole interactions expand in response to perturbed NPC assembly to promote viability, nuclear envelope remodeling, and proper NPC biogenesis.


1997 ◽  
Vol 110 (4) ◽  
pp. 409-420 ◽  
Author(s):  
M.W. Goldberg ◽  
C. Wiese ◽  
T.D. Allen ◽  
K.L. Wilson

We used field emission in-lens scanning electron microscopy to examine newly-assembled, growing nuclear envelopes in Xenopus egg extracts. Scattered among nuclear pore complexes were rare ‘dimples’ (outer membrane depressions, 5–35 nm diameter), more abundant holes (pores) with a variety of edge geometries (35–45 nm diameter; 3.3% of structures), pores containing one to eight triangular ‘star-ring’ subunits (2.1% of total), and more complicated structures. Neither mature complexes, nor these novel structures, formed when wheat germ agglutinin (which binds O-glycosylated nucleoporins) was added at high concentrations (>500 microg/ml) directly to the assembly reaction; low concentrations (10 microg/ml) had no effect. However at intermediate concentrations (50–100 microg/ml), wheat germ agglutinin caused a dramatic, sugar-reversible accumulation of ‘empty’ pores, and other structures; this effect correlated with the lectin-induced precipitation of a variable proportion of each major Xenopus wheat-germ-agglutinin-binding nucleoporin. Another inhibitor, dibromo-BAPTA (5,5′-dibromo-1,2-bis[o-aminophenoxylethane-N,N,N′,N′-tetraacetic acid), had different effects depending on its time of addition to the assembly reaction. When 1 mM dibromo-BAPTA was added at time zero, no pore-related structures formed. However, when dibromo-BAPTA was added to growing nuclei 40–45 minutes after initiating assembly, star-rings and other structures accumulated, suggesting that dibromo-BAPTA can inhibit multiple stages in pore complex assembly. We propose that assembly begins with the formation and stabilization of a hole (pore) through the nuclear envelope, and that dimples, pores, star-rings, and thin rings are structural intermediates in nuclear pore complex assembly.


2021 ◽  
Vol 221 (2) ◽  
Author(s):  
Banafsheh Golchoubian ◽  
Andreas Brunner ◽  
Helena Bragulat-Teixidor ◽  
Annett Neuner ◽  
Busra A. Akarlar ◽  
...  

Nuclear pore complexes (NPCs) are channels within the nuclear envelope that mediate nucleocytoplasmic transport. NPCs form within the closed nuclear envelope during interphase or assemble concomitantly with nuclear envelope reformation in late stages of mitosis. Both interphase and mitotic NPC biogenesis require coordination of protein complex assembly and membrane deformation. During early stages of mitotic NPC assembly, a seed for new NPCs is established on chromatin, yet the factors connecting the NPC seed to the membrane of the forming nuclear envelope are unknown. Here, we report that the reticulon homology domain protein REEP4 not only localizes to high-curvature membrane of the cytoplasmic endoplasmic reticulum but is also recruited to the inner nuclear membrane by the NPC biogenesis factor ELYS. This ELYS-recruited pool of REEP4 promotes NPC assembly and appears to be particularly important for NPC formation during mitosis. These findings suggest a role for REEP4 in coordinating nuclear envelope reformation with mitotic NPC biogenesis.


1980 ◽  
Vol 43 (1) ◽  
pp. 253-267
Author(s):  
J.C. Richardson ◽  
A.H. Maddy

Purified nuclei retaining a high degree of ultrastructural integrity were isolated by conventional centrifugation techniques. The cytoplasmic surface of these nuclei was iodinated using lactoperoxidase immobilized onto giant Sepharose beads; thus the outer nuclear membrane and the cytoplasmic surface of nuclear pore complexes were selectively labelled. Pore complexes in association with a fibrous lamina were isolated from these nuclei by removal of the nucleoplasm and extraction with Triton X-100. The chemical composition of the pore-lamina fraction was 93.6% protein, 6% RNA, 0.4% phospholipid. The labelling suggests that major polypeptides N1 (70 000) and N2 (67 000) and more than 10 other more minor polypeptides, ranging from 33 000 to 200 000 mol. wt, as being components of the nuclear pore complex. Polypeptide N3 (58 000) is shown to be present only on the nucleoplasmic face of nuclear envelopes, probably in the fibrous lamina.


2004 ◽  
Vol 167 (4) ◽  
pp. 583-590 ◽  
Author(s):  
Bryan Zeitler ◽  
Karsten Weis

Nucleocytoplasmic transport occurs through gigantic proteinaceous channels called nuclear pore complexes (NPCs). Translocation through the NPC is exquisitely selective and is mediated by interactions between soluble transport carriers and insoluble NPC proteins that contain phenylalanine-glycine (FG) repeats. Although most FG nucleoporins (Nups) are organized symmetrically about the planar axis of the nuclear envelope, very few localize exclusively to one side of the NPC. We constructed Saccharomyces cerevisiae mutants with asymmetric FG repeats either deleted or swapped to generate NPCs with inverted FG asymmetry. The mutant Nups localize properly within the NPC and exhibit exchanged binding specificity for the export factor Xpo1. Surprisingly, we were unable to detect any defects in the Kap95, Kap121, Xpo1, or mRNA transport pathways in cells expressing the mutant FG Nups. These findings suggest that the biased distribution of FG repeats is not required for major nucleocytoplasmic trafficking events across the NPC.


1997 ◽  
Vol 137 (5) ◽  
pp. 989-1000 ◽  
Author(s):  
Ricardo Bastos ◽  
Lluis Ribas de Pouplana ◽  
Mark Enarson ◽  
Khaldon Bodoor ◽  
Brian Burke

The short filaments extending from the cytoplasmic face of nuclear pore complexes are thought to contain docking sites for nuclear import substrates. One component of these filaments is the large O-linked glycoprotein CAN/Nup214. Immunoprecipitation studies carried out under nondenaturing conditions, and using a variety of antibodies, reveal a novel nonglycosylated nucleoporin, Nup84, that is tightly associated with CAN/Nup214. Consistent with such an association, Nup84 is found to be exposed on the cytoplasmic face of the nuclear pore complex. cDNA sequence analyses indicate that Nup84 contains neither the GLFG nor the XFXFG repeats that are a characteristic of a number of other nuclear pore complex proteins. Secondary structure predictions, however, suggest that Nup84 contains a coiled–coil COOH-terminal domain, a conclusion supported by the observation of significant sequence similarity between this region of the molecule and various members of the tropomyosin family. Mutagenesis and expression studies indicate that the putative coiled–coil domain is required for association with the cytoplasmic face of the nuclear pore complex, whereas it is the NH2-terminal region of Nup84 that contains the site of interaction with CAN/Nup214. These findings suggest a model in which Nup84 may function in the attachment of CAN/Nup214 to the central framework of the nuclear pore complex. In this way, Nup84 could play a central role in the organization of the interface between the pore complex and the cytoplasm.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
David J Thaller ◽  
Matteo Allegretti ◽  
Sapan Borah ◽  
Paolo Ronchi ◽  
Martin Beck ◽  
...  

The integrity of the nuclear membranes coupled to the selective barrier of nuclear pore complexes (NPCs) are essential for the segregation of nucleoplasm and cytoplasm. Mechanical membrane disruption or perturbation to NPC assembly triggers an ESCRT-dependent surveillance system that seals nuclear pores: how these pores are sensed and sealed is ill defined. Using a budding yeast model, we show that the ESCRT Chm7 and the integral inner nuclear membrane (INM) protein Heh1 are spatially segregated by nuclear transport, with Chm7 being actively exported by Xpo1/Crm1. Thus, the exposure of the INM triggers surveillance with Heh1 locally activating Chm7. Sites of Chm7 hyperactivation show fenestrated sheets at the INM and potential membrane delivery at sites of nuclear envelope herniation. Our data suggest that perturbation to the nuclear envelope barrier would lead to local nuclear membrane remodeling to promote membrane sealing. Our findings have implications for disease mechanisms linked to NPC assembly and nuclear envelope integrity.


Sign in / Sign up

Export Citation Format

Share Document