scholarly journals ESCRT ubiquitin-binding domains function cooperatively during MVB cargo sorting

2009 ◽  
Vol 185 (2) ◽  
pp. 213-224 ◽  
Author(s):  
S. Brookhart Shields ◽  
Andrea J. Oestreich ◽  
Stanley Winistorfer ◽  
Doris Nguyen ◽  
Johanna A. Payne ◽  
...  

Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.

2012 ◽  
Vol 23 (11) ◽  
pp. 2170-2183 ◽  
Author(s):  
Zoi Erpapazoglou ◽  
Manel Dhaoui ◽  
Marina Pantazopoulou ◽  
Francesca Giordano ◽  
Muriel Mari ◽  
...  

In yeast, the sorting of transmembrane proteins into the multivesicular body (MVB) internal vesicles requires their ubiquitylation by the ubiquitin ligase Rsp5. This allows their recognition by the ubiquitin-binding domains (UBDs) of several endosomal sorting complex required for transport (ESCRT) subunits. K63-linked ubiquitin (K63Ub) chains decorate several MVB cargoes, and accordingly we show that they localize prominently to the class E compartment, which accumulates ubiquitylated cargoes in cells lacking ESCRT components. Conversely, yeast cells unable to generate K63Ub chains displayed MVB sorting defects. These properties are conserved among eukaryotes, as the mammalian melanosomal MVB cargo MART-1 is modified by K63Ub chains and partly missorted when the genesis of these chains is inhibited. We show that all yeast UBD-containing ESCRT proteins undergo ubiquitylation and deubiquitylation, some being modified through the opposing activities of Rsp5 and the ubiquitin isopeptidase Ubp2, which are known to assemble and disassemble preferentially K63Ub chains, respectively. A failure to generate K63Ub chains in yeast leads to an MVB ultrastructure alteration. Our work thus unravels a double function of K63Ub chains in cargo sorting and MVB biogenesis.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Chun-Che Tseng ◽  
Shirley Dean ◽  
Brian A. Davies ◽  
Ishara F. Azmi ◽  
Natalya Pashkova ◽  
...  

Endosomal sorting complexes required for transport (ESCRT-0, -I, -II, -III) execute cargo sorting and intralumenal vesicle (ILV) formation during conversion of endosomes to multivesicular bodies (MVBs). The AAA-ATPase Vps4 regulates the ESCRT-III polymer to facilitate membrane remodeling and ILV scission during MVB biogenesis. Here, we show that the conserved V domain of ESCRT-associated protein Bro1 (the yeast homologue of mammalian proteins ALIX and HD-PTP) directly stimulates Vps4. This activity is required for MVB cargo sorting. Furthermore, the Bro1 V domain alone supports Vps4/ESCRT–driven ILV formation in vivo without efficient MVB cargo sorting. These results reveal a novel activity of the V domains of Bro1 homologues in licensing ESCRT-III–dependent ILV formation and suggest a role in coordinating cargo sorting with membrane remodeling during MVB sorting. Moreover, ubiquitin binding enhances V domain stimulation of Vps4 to promote ILV formation via the Bro1–Vps4–ESCRT-III axis, uncovering a novel role for ubiquitin during MVB biogenesis in addition to facilitating cargo recognition.


2009 ◽  
Vol 185 (2) ◽  
pp. 185-187 ◽  
Author(s):  
James H. Hurley ◽  
Xuefeng Ren

The endosomal sorting complex required for transport (ESCRT) complexes sort ubiquitinated membrane proteins into multivesicular bodies, which is a key step in the lysosomal degradation pathway. Shields et al. (Shields, S.B., A.J. Oestreich, S. Winistorfer, D. Nguyen, J.A. Payne, D.J. Katzmann, and R. Piper. 2009. J. Cell Biol. 185:213–224) identify a new ubiquitin-binding site in ESCRT-I and provide evidence that the upstream ESCRT-I and -II complexes sort cargo in parallel rather than in series.


2015 ◽  
Vol 26 (7) ◽  
pp. 1345-1356 ◽  
Author(s):  
Tess Shideler ◽  
Daniel P. Nickerson ◽  
Alexey J. Merz ◽  
Greg Odorizzi

Vps9 and Muk1 are guanine nucleotide exchange factors (GEFs) in Saccharomyces cerevisiae that regulate membrane trafficking in the endolysosomal pathway by activating Rab5 GTPases. We show that Vps9 is the primary Rab5 GEF required for biogenesis of late endosomal multivesicular bodies (MVBs). However, only Vps9 (but not Muk1) is required for the formation of aberrant class E compartments that arise upon dysfunction of endosomal sorting complexes required for transport (ESCRTs). ESCRT dysfunction causes ubiquitinated transmembrane proteins to accumulate at endosomes, and we demonstrate that endosomal recruitment of Vps9 is promoted by its ubiquitin-binding CUE domain. Muk1 lacks ubiquitin-binding motifs, but its fusion to the Vps9 CUE domain allows Muk1 to rescue endosome morphology, cargo trafficking, and cellular stress-tolerance phenotypes that result from loss of Vps9 function. These results indicate that ubiquitin binding by the CUE domain promotes Vps9 function in endolysosomal membrane trafficking via promotion of localization.


2006 ◽  
Vol 86 (2) ◽  
pp. 669-707 ◽  
Author(s):  
Olivier Staub ◽  
Daniela Rotin

Ubiquitylation of membrane proteins has gained considerable interest in recent years. It has been recognized as a signal that negatively regulates the cell surface expression of many plasma membrane proteins both in yeast and in mammalian cells. Moreover, it is also involved in endoplasmic reticulum-associated degradation of membrane proteins, and it acts as a sorting signal both in the secretory pathway and in endosomes, where it targets proteins into multivesicular bodies in the lumen of vacuoles/lysosomes. In this review we discuss the progress in understanding these processes, achieved during the past several years.


2010 ◽  
Vol 191 (3) ◽  
pp. 439-441 ◽  
Author(s):  
Robert G. Parton ◽  
Mark T. Howes

In this issue, a study by Hayer et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003086) provides insights into the trafficking of caveolins, the major membrane proteins of caveolae. As well as providing evidence for ubiquitin-mediated endosomal sorting and degradation of caveolin in multivesicular bodies (MVBs), the new findings question the existence of a unique organelle proposed nine years ago, the caveosome.


2016 ◽  
Vol 214 (4) ◽  
pp. 389-399 ◽  
Author(s):  
Kirsty J. McMillan ◽  
Matthew Gallon ◽  
Adam P. Jellett ◽  
Thomas Clairfeuille ◽  
Frances C. Tilley ◽  
...  

The retromer complex acts as a scaffold for endosomal protein complexes that sort integral membrane proteins to various cellular destinations. The retromer complex is a heterotrimer of VPS29, VPS35, and VPS26. Two of these paralogues, VPS26A and VPS26B, are expressed in humans. Retromer dysfunction is associated with neurodegenerative disease, and recently, three VPS26A mutations (p.K93E, p.M112V, and p.K297X) were discovered to be associated with atypical parkinsonism. Here, we apply quantitative proteomics to provide a detailed description of the retromer interactome. By establishing a comparative proteomic methodology, we identify how this interactome is perturbed in atypical parkinsonism-associated VPS26A mutants. In particular, we describe a selective defect in the association of VPS26A (p.K297X) with the SNX27 cargo adaptor. By showing how a retromer mutant leads to altered endosomal sorting of specific PDZ ligand–containing cargo proteins, we reveal a new mechanism for perturbed endosomal cargo sorting in atypical parkinsonism.


2001 ◽  
Vol 12 (8) ◽  
pp. 2556-2566 ◽  
Author(s):  
Peter van Kerkhof ◽  
Cristina M. Alves dos Santos ◽  
Martin Sachse ◽  
Judith Klumperman ◽  
Guojun Bu ◽  
...  

The ubiquitin-proteasome pathway acts as a regulator of the endocytosis of selected membrane proteins. Recent evidence suggests that it may also function in the intracellular trafficking of membrane proteins. In this study, several models were used to address the role of the ubiquitin-proteasome pathway in sorting of internalized proteins to the lysosome. We found that lysosomal degradation of ligands, which remain bound to their receptors within the endocytic pathway, is blocked in the presence of specific proteasome inhibitors. In contrast, a ligand that dissociates from its receptor upon endosome acidification is degraded under the same conditions. Quantitative electron microscopy showed that neither the uptake nor the overall distribution of the endocytic marker bovine serum albumin-gold is substantially altered in the presence of a proteasome inhibitor. The data suggest that the ubiquitin-proteasome pathway is involved in an endosomal sorting step of selected membrane proteins to lysosomes, thereby providing a mechanism for regulated degradation.


2007 ◽  
Vol 18 (2) ◽  
pp. 636-645 ◽  
Author(s):  
Matt Curtiss ◽  
Charles Jones ◽  
Markus Babst

The endosomal sorting complex required for transport (ESCRT)-I protein complex functions in recognition and sorting of ubiquitinated transmembrane proteins into multivesicular body (MVB) vesicles. It has been shown that ESCRT-I contains the vacuolar protein sorting (Vps) proteins Vps23, Vps28, and Vps37. We identified an additional subunit of yeast ESCRT-I called Mvb12, which seems to associate with ESCRT-I by binding to Vps37. Transient recruitment of ESCRT-I to MVBs results in the rapid degradation of Mvb12. In contrast to mutations in other ESCRT-I subunits, which result in strong defects in MVB cargo sorting, deletion of MVB12 resulted in only a partial sorting phenotype. This trafficking defect was fully suppressed by overexpression of the ESCRT-II complex. Mutations in MVB12 did not affect recruitment of ESCRT-I to MVBs, but they did result in delivery of ESCRT-I to the vacuolar lumen via the MVB pathway. Together, these observations suggest that Mvb12 may function in regulating the interactions of ESCRT-I with cargo and other proteins of the ESCRT machinery to efficiently coordinate cargo sorting and release of ESCRT-I from the MVB.


Sign in / Sign up

Export Citation Format

Share Document