scholarly journals Revisiting caveolin trafficking: the end of the caveosome

2010 ◽  
Vol 191 (3) ◽  
pp. 439-441 ◽  
Author(s):  
Robert G. Parton ◽  
Mark T. Howes

In this issue, a study by Hayer et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003086) provides insights into the trafficking of caveolins, the major membrane proteins of caveolae. As well as providing evidence for ubiquitin-mediated endosomal sorting and degradation of caveolin in multivesicular bodies (MVBs), the new findings question the existence of a unique organelle proposed nine years ago, the caveosome.

2009 ◽  
Vol 185 (2) ◽  
pp. 185-187 ◽  
Author(s):  
James H. Hurley ◽  
Xuefeng Ren

The endosomal sorting complex required for transport (ESCRT) complexes sort ubiquitinated membrane proteins into multivesicular bodies, which is a key step in the lysosomal degradation pathway. Shields et al. (Shields, S.B., A.J. Oestreich, S. Winistorfer, D. Nguyen, J.A. Payne, D.J. Katzmann, and R. Piper. 2009. J. Cell Biol. 185:213–224) identify a new ubiquitin-binding site in ESCRT-I and provide evidence that the upstream ESCRT-I and -II complexes sort cargo in parallel rather than in series.


2009 ◽  
Vol 185 (2) ◽  
pp. 213-224 ◽  
Author(s):  
S. Brookhart Shields ◽  
Andrea J. Oestreich ◽  
Stanley Winistorfer ◽  
Doris Nguyen ◽  
Johanna A. Payne ◽  
...  

Ubiquitin (Ub) sorting receptors facilitate the targeting of ubiquitinated membrane proteins into multivesicular bodies (MVBs). Ub-binding domains (UBDs) have been described in several endosomal sorting complexes required for transport (ESCRT). Using available structural information, we have investigated the role of the multiple UBDs within ESCRTs during MVB cargo selection. We found a novel UBD within ESCRT-I and show that it contributes to MVB sorting in concert with the known UBDs within the ESCRT complexes. These experiments reveal an unexpected level of coordination among the ESCRT UBDs, suggesting that they collectively recognize a diverse set of cargo rather than act sequentially at discrete steps.


2008 ◽  
Vol 19 (6) ◽  
pp. 2379-2388 ◽  
Author(s):  
Sébastien Léon ◽  
Zoi Erpapazoglou ◽  
Rosine Haguenauer-Tsapis

The ubiquitylation of membrane proteins destined for the vacuole/lysosome is essential for their recognition by the endosomal sorting machinery and their internalization into vesicles of multivesicular bodies (MVBs). In yeast, this process requires Rsp5p, an essential ubiquitin ligase of the Nedd4 family. We describe here two redundant proteins, Ear1p and Ssh4p, required for the vacuolar targeting of several cargoes originating from the Golgi or the plasma membrane. Ear1p is an endosomal protein that interacts with Rsp5p through its PPxY motifs, and it is required for the ubiquitylation of selected cargoes before their MVB sorting. In-frame fusion of cargo to ubiquitin overcomes the need for Ear1p/Ssh4p, confirming a role for these proteins in cargo ubiquitylation. Interestingly, Ear1p is itself ubiquitylated by Rsp5p and targeted to the vacuole. Finally, Ear1p overexpression leads to Rsp5p accumulation at endosomes, interfering with some of its functions in trafficking. Therefore, Ear1p/Ssh4p recruit Rsp5p and assist it in its function at MVBs by directing the ubiquitylation of specific cargoes.


2014 ◽  
Vol 205 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Manuel Alonso Y Adell ◽  
Georg F. Vogel ◽  
Mehrshad Pakdel ◽  
Martin Müller ◽  
Herbert Lindner ◽  
...  

Five endosomal sorting complexes required for transport (ESCRTs) mediate the degradation of ubiquitinated membrane proteins via multivesicular bodies (MVBs) in lysosomes. ESCRT-0, -I, and –II interact with cargo on endosomes. ESCRT-II also initiates the assembly of a ringlike ESCRT-III filament consisting of Vps20, Snf7, Vps24, and Vps2. The AAA–adenosine triphosphatase Vps4 disassembles and recycles the ESCRT-III complex, thereby terminating the ESCRT pathway. A mechanistic role for Vps4 in intraluminal vesicle (ILV) formation has been unclear. By combining yeast genetics, biochemistry, and electron tomography, we find that ESCRT-III assembly on endosomes is required to induce or stabilize the necks of growing MVB ILVs. Yet, ESCRT-III alone is not sufficient to complete ILV biogenesis. Rather, binding of Vps4 to ESCRT-III, coordinated by interactions with Vps2 and Snf7, is coupled to membrane neck constriction during ILV formation. Thus, Vps4 not only recycles ESCRT-III subunits but also cooperates with ESCRT-III to drive distinct membrane-remodeling steps, which lead to efficient membrane scission at the end of ILV biogenesis in vivo.


2003 ◽  
Vol 162 (3) ◽  
pp. 435-442 ◽  
Author(s):  
Kristi G. Bache ◽  
Andreas Brech ◽  
Anja Mehlum ◽  
Harald Stenmark

Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs causes a reduction in membrane-associated ESCRT-I subunits, a decreased number of multivesicular bodies and an increased size of late endosomes. Even though Hrs mainly localizes to early endosomes and Tsg101 to late endosomes, the two proteins colocalize on a subpopulation of endosomes that contain lyso-bisphosphatidic acid. Overexpression of Hrs causes accumulation of Tsg101 on early endosomes and prevents its localization to late endosomes. We conclude that Hrs mediates the initial recruitment of ESCRT-I to endosomes and, thereby, indirectly regulates multivesicular body formation.


2011 ◽  
Vol 192 (2) ◽  
pp. 229-242 ◽  
Author(s):  
Daniel K. Stringer ◽  
Robert C. Piper

ESCRTs (endosomal sorting complexes required for transport) bind and sequester ubiquitinated membrane proteins and usher them into multivesicular bodies (MVBs). As Ubiquitin (Ub)-binding proteins, ESCRTs themselves become ubiquitinated. However, it is unclear whether this regulates a critical aspect of their function or is a nonspecific consequence of their association with the Ub system. We investigated whether ubiquitination of the ESCRTs was required for their ability to sort cargo into the MVB lumen. Although we found that Rsp5 was the main Ub ligase responsible for ubiquitination of ESCRT-0, elimination of Rsp5 or elimination of the ubiquitinatable lysines within ESCRT-0 did not affect MVB sorting. Moreover, by fusing the catalytic domain of deubiquitinating peptidases onto ESCRTs, we could block ESCRT ubiquitination and the sorting of proteins that undergo Rsp5-dependent ubiquitination. Yet, proteins fused to a single Ub moiety were efficiently delivered to the MVB lumen, which strongly indicates that a single Ub is sufficient in sorting MVBs in the absence of ESCRT ubiquitination.


2015 ◽  
Vol 26 (25) ◽  
pp. 4700-4717 ◽  
Author(s):  
Anup Parchure ◽  
Neha Vyas ◽  
Charles Ferguson ◽  
Robert G. Parton ◽  
Satyajit Mayor

Hedgehog (Hh) is a secreted morphogen involved in both short- and long-range signaling necessary for tissue patterning during development. It is unclear how this dually lipidated protein is transported over a long range in the aqueous milieu of interstitial spaces. We previously showed that the long-range signaling of Hh requires its oligomerization. Here we show that Hh is secreted in the form of exovesicles. These are derived by the endocytic delivery of cell surface Hh to multivesicular bodies (MVBs) via an endosomal sorting complex required for transport (ECSRT)–dependent process. Perturbations of ESCRT proteins have a selective effect on long-range Hh signaling in Drosophila wing imaginal discs. Of importance, oligomerization-defective Hh is inefficiently incorporated into exovesicles due to its poor endocytic delivery to MVBs. These results provide evidence that nanoscale organization of Hh regulates the secretion of Hh on ESCRT-derived exovesicles, which in turn act as a vehicle for long-range signaling.


2018 ◽  
Vol 115 (19) ◽  
pp. E4396-E4405 ◽  
Author(s):  
Sebastian Bänfer ◽  
Dominik Schneider ◽  
Jenny Dewes ◽  
Maximilian T. Strauss ◽  
Sven-A. Freibert ◽  
...  

The beta-galactoside binding lectin galectin-3 (Gal3) is found intracellularly and in the extracellular space. Secretion of this lectin is mediated independently of the secretory pathway by a not yet defined nonclassical mechanism. Here, we found Gal3 in the lumen of exosomes. Superresolution and electron microscopy studies visualized Gal3 recruitment and sorting into intraluminal vesicles. Exosomal Gal3 release depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and functional Vps4a. Either Tsg101 knockdown or expression of dominant-negative Vps4aE228Q causes an intracellular Gal3 accumulation at multivesicular body formation sites. In addition, we identified a highly conserved tetrapeptide P(S/T)AP motif in the amino terminus of Gal3 that mediates a direct interaction with Tsg101. Mutation of the P(S/T)AP motif results in a loss of interaction and a dramatic decrease in exosomal Gal3 secretion. We conclude that Gal3 is a member of endogenous non-ESCRT proteins which are P(S/T)AP tagged for exosomal release.


2010 ◽  
Vol 21 (23) ◽  
pp. 4057-4060 ◽  
Author(s):  
Emily M. Coonrod ◽  
Tom H. Stevens

In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this “class E compartment” contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.


2009 ◽  
Vol 185 (5) ◽  
pp. 765-767 ◽  
Author(s):  
Arthur E. Johnson

Ribosomes synthesizing secretory and membrane proteins are bound to translocons at the membrane of the endoplasmic reticulum (ER). Both the ribosome and translocon are complex macromolecular machines whose structural and functional interactions are poorly understood. A new study by Pool (Pool, M.R. 2009. J. Cell Biol. 185:889–902) has now shown that the structure of the translocon is dictated by the identity of the protein being synthesized by the ribosome, thereby demonstrating that the two macromolecular machines are structurally coupled for functional purposes. The study also identifies an unexpected component in the apparent molecular linkage that connects the two machines, a discovery that shows the current view of translocon structure is oversimplified.


Sign in / Sign up

Export Citation Format

Share Document