How cyclin A destruction escapes the spindle assembly checkpoint
The anaphase-promoting complex/cyclosome (APC/C) is the ubiquitin ligase essential to mitosis, which ensures that specific proteins are degraded at specific times to control the order of mitotic events. The APC/C coactivator, Cdc20, is targeted by the spindle assembly checkpoint (SAC) to restrict APC/C activity until metaphase, yet early substrates, such as cyclin A, are degraded in the presence of the active checkpoint. Cdc20 and the cyclin-dependent kinase cofactor, Cks, are required for cyclin A destruction, but how they enable checkpoint-resistant destruction has not been elucidated. In this study, we answer this problem: we show that the N terminus of cyclin A binds directly to Cdc20 and with sufficient affinity that it can outcompete the SAC proteins. Subsequently, the Cks protein is necessary and sufficient to promote cyclin A degradation in the presence of an active checkpoint by binding cyclin A–Cdc20 to the APC/C.