mitotic phosphorylation
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 15)

H-INDEX

36
(FIVE YEARS 3)

Oncogene ◽  
2021 ◽  
Author(s):  
Lan Yu ◽  
Yue Lang ◽  
Ching-Cheng Hsu ◽  
Wei-Min Chen ◽  
Jui-Chung Chiang ◽  
...  

AbstractChromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP’s interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3075
Author(s):  
Jinyuan Duan ◽  
Wenzhu Li ◽  
Xin Shu ◽  
Bing Yang ◽  
Xiangwei He ◽  
...  

Reversible phosphorylation has emerged as an important mechanism for regulating proteasome function in various physiological processes. Essentially all proteasome phosphorylations characterized thus far occur on proteasome holoenzyme or subcomplexes to regulate substrate degradation. Here, we report a highly conserved phosphorylation that only exists on the unassembled α5 subunit of the proteasome. The modified residue, α5-Ser16, is within a SP motif typically recognized by cyclin-dependent kinases (CDKs). Using a phospho-specific antibody generated against this site, we found that α5-S16 phosphorylation is mitosis-specific in both yeast and mammalian cells. Blocking this site with a S16A mutation caused growth defect and G2/M arrest of the cell cycle. α5-S16 phosphorylation depends on CDK1 activity and is highly abundant in some but not all mitotic cells. Immunoprecipitation and mass spectrometry (IP-MS) studies identified numerous proteins that could interact with phosphorylated α5, including PLK1, a key regulator of mitosis. α5–PLK1 interaction increased upon mitosis and could be facilitated by S16 phosphorylation. CDK1 activation downstream of PLK1 activity was delayed in S16A mutant cells, suggesting an important role of α5-S16 phosphorylation in regulating PLK1 and mitosis. These data have revealed an unappreciated function of “exo-proteasome” phosphorylation of a proteasome subunit and may bring new insights to our understanding of cell cycle control.


2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Amrita Kumari ◽  
Chandan Kumar ◽  
Rajaiah Pergu ◽  
Megha Kumar ◽  
Sagar P. Mahale ◽  
...  

The dynein motor performs multiple functions in mitosis by engaging with a wide cargo spectrum. One way to regulate dynein’s cargo-binding selectivity is through the C-terminal domain (CTD) of its light intermediate chain 1 subunit (LIC1), which binds directly with cargo adaptors. Here we show that mitotic phosphorylation of LIC1-CTD at its three cdk1 sites is required for proper mitotic progression, for dynein loading onto prometaphase kinetochores, and for spindle assembly checkpoint inactivation in human cells. Mitotic LIC1-CTD phosphorylation also engages the prolyl isomerase Pin1 predominantly to Hook2-dynein-Nde1-Lis1 complexes, but not to dynein-spindly-dynactin complexes. LIC1-CTD dephosphorylation abrogates dynein-Pin1 binding, promotes prophase centrosome–nuclear envelope detachment, and impairs metaphase chromosome congression and mitotic Golgi fragmentation, without affecting interphase membrane transport. Phosphomutation of a conserved LIC1-CTD SP site in zebrafish leads to early developmental defects. Our work reveals that LIC1-CTD phosphorylation differentially regulates distinct mitotic dynein pools and suggests the evolutionary conservation of this phosphoregulation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rosa D. Hernansaiz-Ballesteros ◽  
Csenge Földi ◽  
Luca Cardelli ◽  
László G. Nagy ◽  
Attila Csikász-Nagy

AbstractIn eukaryotes the entry into mitosis is initiated by activation of cyclin-dependent kinases (CDKs), which in turn activate a large number of protein kinases to induce all mitotic processes. The general view is that kinases are active in mitosis and phosphatases turn them off in interphase. Kinases activate each other by cross- and self-phosphorylation, while phosphatases remove these phosphate groups to inactivate kinases. Crucial exceptions to this general rule are the interphase kinase Wee1 and the mitotic phosphatase Cdc25. Together they directly control CDK in an opposite way of the general rule of mitotic phosphorylation and interphase dephosphorylation. Here we investigate why this opposite system emerged and got fixed in almost all eukaryotes. Our results show that this reversed action of a kinase-phosphatase pair, Wee1 and Cdc25, on CDK is particularly suited to establish a stable G2 phase and to add checkpoints to the cell cycle. We show that all these regulators appeared together in LECA (Last Eukaryote Common Ancestor) and co-evolved in eukaryotes, suggesting that this twist in kinase-phosphatase regulation was a crucial step happening at the emergence of eukaryotes.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii18-ii19
Author(s):  
Charles Day ◽  
Alyssa Langfald ◽  
Florina Grigore ◽  
Leslie Sepaniac ◽  
Jason Stumpff ◽  
...  

Abstract Pediatric midline gliomas – including DIPG – are lethal brain tumors in children, with poor prognosis and limited treatment options that provide only short-term benefits. The majority have a lysine-to-methionine substitution at residue 27 (H3K27M) in genes expressing histone H3 – predominantly in the H3.3 variant. This causes a global reduction in H3 Lys27 tri-methylation (H3K27Me3), comprehensive epigenetic reprogramming, and is a key driver in gliomagenesis. We show that the H3.3K27M mutation also induces chromosome segregation defects, which in high-grade tumors, results in extensive copy number alterations (CNAs). Ser31 is one of five amino acid substitutions differentiating H3.3 from canonical H3.1. Mitotic phosphorylation of H3.3 Ser31 by Chk1 kinase is restricted to pericentromeric heterochromatin, where it plays a role in chromosome segregation. We show that the K27M mutation affects neighboring Ser31 phosphorylation and pericentromeric heterochromatin organization. We demonstrate that (i) H3.3 K27M protein is defective for Ser31 phosphorylation by Chk1 kinase in vitro; (ii) DIPG cell lines have significantly decreased mitotic Ser31 phosphorylation, and are chromosomally unstable; and (iii) CRISPR-reversion of H3.3K27M to Lys27 restores phospho-Ser31 (and Lys27 tri-methylation) and significantly decreases chromosome instability. Expression of H3.3K27M or non-phosphorylatable H3.3S31A mutants in WT cells results in chromosome missegregation; this is suppressed by co-expression of phospho-mimetic H3.3K27M/S31E. In normal cells, chromosome missegregation stimulates p53-dependent cell cycle arrest in G1 to prevent the proliferation of aneuploid daughters. However, cells expressing H3.3 K27M or S31A failed to arrest following missegregation - despite having WT p53. Finally, in a novel mouse model of glioma, mean survival of mice with tumors induced with H3.3K27M and H3.3S31A was 81 and 68 days: 100% of H3.3S31A mice developed high-grade tumors. H3.3 WT controls developed only low-grade tumors and all survived 100 days. H3.3S31A is WT for Lys27 tri-methylation and thus, loss of Ser31 phosphorylation alone is oncogenic.


2020 ◽  
Vol 219 (10) ◽  
Author(s):  
Koichiro Yamashita ◽  
Shigehiko Tamura ◽  
Masanori Honsho ◽  
Hiroto Yada ◽  
Yuichi Yagita ◽  
...  

Peroxisomal matrix proteins are imported into peroxisomes via membrane-bound docking/translocation machinery. One central component of this machinery is Pex14p, a peroxisomal membrane protein involved in the docking of Pex5p, the receptor for peroxisome targeting signal type 1 (PTS1). Studies in several yeast species have shown that Pex14p is phosphorylated in vivo, whereas no function has been assigned to Pex14p phosphorylation in yeast and mammalian cells. Here, we investigated peroxisomal protein import and its dynamics in mitotic mammalian cells. In mitotically arrested cells, Pex14p is phosphorylated at Ser-232, resulting in a lower import efficiency of catalase, but not the majority of proteins including canonical PTS1 proteins. Conformational change induced by the mitotic phosphorylation of Pex14p more likely increases homomeric interacting affinity and suppresses topological change of its N-terminal part, thereby giving rise to the retardation of Pex5p export in mitotic cells. Taken together, these data show that mitotic phosphorylation of Pex14p and consequent suppression of catalase import are a mechanism of protecting DNA upon nuclear envelope breakdown at mitosis.


PLoS Biology ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. e3000718
Author(s):  
Akinori Yamasaki ◽  
Yui Jin ◽  
Yoshinori Ohsumi

Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1016 ◽  
Author(s):  
Pablo ◽  
Marasek ◽  
Pozo-Rodrigálvarez ◽  
Wilhelmsson ◽  
Inagaki ◽  
...  

Vimentin (VIM) is an intermediate filament (nanofilament) protein expressed in multiple cell types, including astrocytes. Mice with VIM mutations of serine sites phosphorylated during mitosis (VIMSA/SA) show cytokinetic failure in fibroblasts and lens epithelial cells, chromosomal instability, facilitated cell senescence, and increased neuronal differentiation of neural progenitor cells. Here we report that in vitro immature VIMSA/SA astrocytes exhibit cytokinetic failure and contain vimentin accumulations that co-localize with mitochondria. This phenotype is transient and disappears with VIMSA/SA astrocyte maturation and expression of glial fibrillary acidic protein (GFAP); it is also alleviated by the inhibition of cell proliferation. To test the hypothesis that GFAP compensates for the effect of VIMSA/SA in astrocytes, we crossed the VIMSA/SA and GFAP−/− mice. Surprisingly, the fraction of VIMSA/SA immature astrocytes with abundant vimentin accumulations was reduced when on GFAP−/− background. This indicates that the disappearance of vimentin accumulations and cytokinetic failure in mature astrocyte cultures are independent of GFAP expression. Both VIMSA/SA and VIMSA/SAGFAP−/− astrocytes showed normal mitochondrial membrane potential and vulnerability to H2O2, oxygen/glucose deprivation, and chemical ischemia. Thus, mutation of mitotic phosphorylation sites in vimentin triggers formation of vimentin accumulations and cytokinetic failure in immature astrocytes without altering their vulnerability to oxidative stress.


2019 ◽  
Vol 12 (594) ◽  
pp. eaaw2939 ◽  
Author(s):  
Rozita Adib ◽  
Jessica M. Montgomery ◽  
Joseph Atherton ◽  
Laura O’Regan ◽  
Mark W. Richards ◽  
...  

EML4 is a microtubule-associated protein that promotes microtubule stability. We investigated its regulation across the cell cycle and found that EML4 was distributed as punctate foci along the microtubule lattice in interphase but exhibited reduced association with spindle microtubules in mitosis. Microtubule sedimentation and cryo–electron microscopy with 3D reconstruction revealed that the basic N-terminal domain of EML4 mediated its binding to the acidic C-terminal tails of α- and β-tubulin on the microtubule surface. The mitotic kinases NEK6 and NEK7 phosphorylated the EML4 N-terminal domain at Ser144 and Ser146 in vitro, and depletion of these kinases in cells led to increased EML4 binding to microtubules in mitosis. An S144A-S146A double mutant not only bound inappropriately to mitotic microtubules but also increased their stability and interfered with chromosome congression. In addition, constitutive activation of NEK6 or NEK7 reduced the association of EML4 with interphase microtubules. Together, these data support a model in which NEK6- and NEK7-dependent phosphorylation promotes the dissociation of EML4 from microtubules in mitosis in a manner that is required for efficient chromosome congression.


Sign in / Sign up

Export Citation Format

Share Document