scholarly journals Molecular architecture and assembly of the yeast kinetochore MIND complex

2010 ◽  
Vol 190 (5) ◽  
pp. 823-834 ◽  
Author(s):  
Daniel P. Maskell ◽  
Xiao-Wen Hu ◽  
Martin R. Singleton

The MIND multiprotein complex is a conserved, essential component of eukaryotic kinetochores and is a constituent of the tripartite KMN network that directly attaches the kinetochore to the mitotic spindle. The primary microtubule-binding complex in this network, NDC80, has been extensively characterized, but very little is known about the structure or function of the MIND complex. In this study, we present biochemical, hydrodynamic, electron microscopy, and small-angle x-ray scattering data that provide insight into the overall architecture and assembly of the MIND complex and the physical relationship of the complex with other components of the KMN network. We propose a model for the overall structure of the complex and provide data on the interactions with NDC80, Spc105p, and thus the mitotic spindle.

2016 ◽  
Vol 18 (8) ◽  
pp. 5707-5719 ◽  
Author(s):  
Alejandro Panjkovich ◽  
Dmitri I. Svergun

SREFLEX employs normal mode analysis for the flexible refinement of atomic models of biological macromolecules against solution scattering data, providing insight into conformational transitions.


2006 ◽  
Vol 950 ◽  
Author(s):  
Shashishekar P. Adiga ◽  
Peter Zapol ◽  
Millicent A. Firestone

ABSTRACTAssociation of amphiphilic triblock copolymers with lipid membranes results in versatile novel materials with enormous potential in many areas of bionanotechnology. The molecular architecture and concentration of block copolymers along with environmental variables such as temperature and pH provide means to tune these structures for desired applications and also allow for designing signal-responsive materials. Understanding interaction between block copolymers and lipid bilayers is crucial for applications in nanomedicine. Monte Carlo simulations are used to explore the effect of molecular architecture on the mode of insertion of triblock copolymers into lipid bilayers. The results are compared with small angle X-ray scattering data.


RSC Advances ◽  
2021 ◽  
Vol 11 (15) ◽  
pp. 8619-8627
Author(s):  
I. E. Grey ◽  
P. Bordet ◽  
N. C. Wilson

Amorphous titania samples prepared by ammonia solution neutralization of titanyl sulphate have been characterized by chemical and thermal analyses, and with reciprocal-space and real-space fitting of wide-angle synchrotron X-ray scattering data.


2018 ◽  
Vol 122 (45) ◽  
pp. 10320-10329 ◽  
Author(s):  
Amin Sadeghpour ◽  
Marjorie Ladd Parada ◽  
Josélio Vieira ◽  
Megan Povey ◽  
Michael Rappolt

1995 ◽  
Author(s):  
Yibin Zheng ◽  
Peter C. Doerschuk ◽  
John E. Johnson

2020 ◽  
Author(s):  
Steve P. Meisburger ◽  
Da Xu ◽  
Nozomi Ando

AbstractMixtures of biological macromolecules are inherently difficult to study using structural methods, as increasing complexity presents new challenges for data analysis. Recently, there has been growing interest in studying evolving mixtures using small-angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput, or chromatography-coupled setups. Deconvolution and interpretation of the resulting datasets, however, are nontrivial when neither the scattering components nor the way in which they evolve are known a priori. To address this issue, we introduce the REGALS method (REGularized Alternating Least Squares), which incorporates simple expectations about the data as prior knowledge and utilizes parameterization and regularization to provide robust deconvolution solutions. The restraints used by REGALS are general properties such as smoothness of profiles and maximum dimensions of species, which makes it well-suited for exploring datasets with unknown species. Here we apply REGALS to analyze experimental data from four types of SAXS experiment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing, and time-resolved temperature jump. Based on its performance with these challenging datasets, we anticipate that REGALS will be a valuable addition to the SAXS analysis toolkit and enable new experiments. The software is implemented in both MATLAB and python and is available freely as an open-source software package.


Sign in / Sign up

Export Citation Format

Share Document