scholarly journals Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake

2011 ◽  
Vol 193 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Daniel K. Rozelle ◽  
Scott D. Hansen ◽  
Kenneth B. Kaplan

During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)–dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit.

2001 ◽  
Vol 11 (10) ◽  
pp. 784-788 ◽  
Author(s):  
Sarah E. Lee ◽  
Lisa M. Frenz ◽  
Nicholas J. Wells ◽  
Anthony L. Johnson ◽  
Leland H. Johnston

2004 ◽  
Vol 15 (4) ◽  
pp. 1519-1532 ◽  
Author(s):  
Jeffrey N. Molk ◽  
Scott C. Schuyler ◽  
Jenny Y. Liu ◽  
James G. Evans ◽  
E. D. Salmon ◽  
...  

In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade.


2008 ◽  
Vol 36 (3) ◽  
pp. 387-390 ◽  
Author(s):  
Manuel Mendoza ◽  
Yves Barral

During anaphase, the spindle pulls the sister kinetochores apart until the sister chromatids are fully separated from each other. Subsequently, cytokinesis cleaves between the two separated chromosome masses to form two nucleated cells. Results from Schizosaccharomyces pombe suggested that cytokinesis and chromosome segregation are not co-ordinated with each other. However, recent studies indicate that, at least in budding yeast, a checkpoint called NoCut prevents abscission when spindle elongation is impaired, and might delay cytokinesis until all chromosomes are pulled out of the cleavage plane. Here, we discuss this possibility and summarize evidence suggesting that such a checkpoint is likely to be conserved in higher eukaryotes.


2009 ◽  
Vol 20 (1) ◽  
pp. 245-255 ◽  
Author(s):  
William G. Waples ◽  
Charly Chahwan ◽  
Marta Ciechonska ◽  
Brigitte D. Lavoie

The completion of chromosome segregation during anaphase requires the hypercondensation of the ∼1-Mb rDNA array, a reaction dependent on condensin and Cdc14 phosphatase. Using systematic genetic screens, we identified 29 novel genetic interactions with budding yeast condensin. Of these, FOB1, CSM1, LRS4, and TOF2 were required for the mitotic condensation of the tandem rDNA array localized on chromosome XII. Interestingly, whereas Fob1 and the monopolin subunits Csm1 and Lrs4 function in rDNA condensation throughout M phase, Tof2 was only required during anaphase. We show that Tof2, which shares homology with the Cdc14 inhibitor Net1/Cfi1, interacts with Cdc14 phosphatase and its deletion suppresses defects in mitotic exit network (MEN) components. Consistent with these genetic data, the onset of Cdc14 release from the nucleolus was similar in TOF2 and tof2Δ cells; however, the magnitude of the release was dramatically increased in the absence of Tof2, even when the MEN pathway was compromised. These data support a model whereby Tof2 coordinates the biphasic release of Cdc14 during anaphase by restraining a population of Cdc14 in the nucleolus after activation of the Cdc14 early anaphase release (FEAR) network, for subsequent release by the MEN.


2018 ◽  
Author(s):  
J Whalen ◽  
C Sniffen ◽  
S Gartland ◽  
M Vannini ◽  
A Seshan

ABSTRACTThe proper regulation of cell cycle transitions is paramount to the maintenance of cellular genome integrity. In budding yeast, the mitotic exit network (MEN) is a Ras-like signaling cascade that effects the transition from M phase to G1 during the cell division cycle in budding yeast. MEN activation is tightly regulated. It occurs during anaphase and is coupled to mitotic spindle position by the spindle position checkpoint (SPoC). Bfa1 is a key component of the SPoC and functions as part of a two-component GAP complex along with Bub2. The GAP activity of Bfa1-Bub2 keeps the MEN GTPase Tem1 inactive in cells with mispositioned spindles, thereby preventing inappropriate mitotic exit and preserving genome integrity. Interestingly, a GAP-independent role for Bfa1 in mitotic exit regulation has been previously identified. However the nature of this Bub2-independent role and its biological significance are not understood. Here we show that Bfa1 also activates the MEN by promoting the localization of Tem1 primarily to the daughter spindle pole body (dSPB). We demonstrate that the overexpression of BFA1 is lethal due to defects in Tem1 localization, which is required for its activity. In addition, our studies demonstrate a Tem1-independent role for Bfa1 in promoting proper cytokinesis. Cells lacking TEM1, in which the essential mitotic exit function is bypassed, exhibit cytokinesis defects. These defects are suppressed by the overexpression of BFA1. We conclude that Bfa1 functions to both inhibit and activate late mitotic events.


2021 ◽  
Author(s):  
Shen Jiangyan ◽  
Kaoru Takegawa ◽  
Gislene Pereira ◽  
Hiromi Maekawa

The Mitotic exit network (MEN) is a conserved signalling pathway essential for termination of mitosis in the budding yeast Saccharomyces cerevisiae. All MEN components are highly conserved in the methylotrophic budding yeast Ogataea polymorpha, except for Cdc15 kinase. Amongst O. polymorpha protein kinases that have some similarity to ScCdc15, only two had no other obvious homologues in S. cerevisiae and these were named OpHCD1 and OpHCD2 for homologue candidate of ScCdc15. A search in other yeast species revealed that OpHcd2 has an armadillo type fold in the C-terminal region as found in SpCdc7 kinases of the fission yeast Schizosaccharomyces pombe, which are homologues of ScCdc15; while OpHcd1 is homologous to SpSid1 kinase, a component of the Septation Initiation Network (SIN) of S. pombe not present in the MEN. Since the deletion of either OpHCD1 or OpHCD2 resulted in lethality under standard growth conditions, conditional mutants were constructed by introducing an ATP analog sensitive mutation. For OpHCD2, we constructed and used new genetic tools for O. polymorpha that combined the Tet promoter and the improved auxin-degron systems. Conditional mutants for OpHCD1 and OpHCD2 exhibited significant delay in late anaphase and defective cell separation, suggesting that both genes have roles in mitotic exit and cytokinesis. These results suggest a SIN-like signalling pathway regulates termination of mitosis in O. polymorpha and that the loss of Sid1/Hcd1 kinase in the MEN occurred relatively recently during the evolution of budding yeast.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Michael Vannini ◽  
Victoria R. Mingione ◽  
Ashleigh Meyer ◽  
Courtney Sniffen ◽  
Jenna Whalen ◽  
...  

Mitotic exit is a critical cell cycle transition that requires the careful coordination of nuclear positioning and cyclin B destruction in budding yeast for the maintenance of genome integrity. The mitotic exit network (MEN) is a Ras-like signal transduction pathway that promotes this process during anaphase. A crucial step in MEN activation occurs when the Dbf2-Mob1 protein kinase complex associates with the Nud1 scaffold protein at the yeast spindle pole bodies (SPBs; centrosome equivalents) and thereby becomes activated. This requires prior priming phosphorylation of Nud1 by Cdc15 at SPBs. Cdc15 activation, in turn, requires both the Tem1 GTPase and the Polo kinase Cdc5, but how Cdc15 associates with SPBs is not well understood. We have identified a hyperactive allele of NUD1, nud1-A308T, that recruits Cdc15 to SPBs in all stages of the cell cycle in a CDC5-independent manner. This allele leads to early recruitment of Dbf2-Mob1 during metaphase and requires known Cdc15 phospho-sites on Nud1. The presence of nud1-A308T leads to loss of coupling between nuclear position and mitotic exit in cells with mispositioned spindles. Our findings highlight the importance of scaffold regulation in signaling pathways to prevent improper activation.


2003 ◽  
Vol 160 (3) ◽  
pp. 329-339 ◽  
Author(s):  
Stéphanie Buvelot ◽  
Sean Y. Tatsutani ◽  
Danielle Vermaak ◽  
Sue Biggins

Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1–GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone late in anaphase. Ipl1p kinase activity increases at anaphase, and ipl1 mutants can stabilize fragile spindles. As the spindle disassembles, Ipl1p follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p substrates colocalize with Ipl1p to the spindle midzone, identifying additional proteins that may regulate spindle disassembly. We propose that Ipl1p regulates both the kinetochore and interpolar microtubule plus ends to regulate its various mitotic functions.


2010 ◽  
Vol 123 (11) ◽  
pp. 1851-1861 ◽  
Author(s):  
F. Meitinger ◽  
B. Petrova ◽  
I. M. Lombardi ◽  
D. T. Bertazzi ◽  
B. Hub ◽  
...  

2003 ◽  
Vol 14 (11) ◽  
pp. 4734-4743 ◽  
Author(s):  
Hong Hwa Lim ◽  
Foong May Yeong ◽  
Uttam Surana

Chromosome segregation, mitotic exit, and cytokinesis are executed in this order during mitosis. Although a scheme coordinating sister chromatid separation and initiation of mitotic exit has been proposed, the mechanism that temporally links the onset of cytokinesis to mitotic exit is not known. Exit from mitosis is regulated by the mitotic exit network (MEN), which includes a GTPase (Tem1) and various kinases (Cdc15, Cdc5, Dbf2, and Dbf20). Here, we show that Dbf2 and Dbf20 functions are necessary for the execution of cytokinesis. Relocalization of these proteins from spindle pole bodies to mother daughter neck seems to be necessary for this role because cdc15-2 mutant cells, though capable of exiting mitosis at semipermissive temperature, are unable to localize Dbf2 (and Dbf20) to the “neck” and fail to undergo cytokinesis. These cells can assemble and constrict the actomyosin ring normally but are incapable of forming a septum, suggesting that MEN components are critical for the initiation of septum formation. Interestingly, the spindle pole body to neck translocation of Dbf2 and Dbf20 is triggered by the inactivation of mitotic kinase. The requirement of kinase inactivation for translocation of MEN components to the division site thus provides a mechanism that renders mitotic exit a prerequisite for cytokinesis.


Sign in / Sign up

Export Citation Format

Share Document