Co-ordination of cytokinesis with chromosome segregation

2008 ◽  
Vol 36 (3) ◽  
pp. 387-390 ◽  
Author(s):  
Manuel Mendoza ◽  
Yves Barral

During anaphase, the spindle pulls the sister kinetochores apart until the sister chromatids are fully separated from each other. Subsequently, cytokinesis cleaves between the two separated chromosome masses to form two nucleated cells. Results from Schizosaccharomyces pombe suggested that cytokinesis and chromosome segregation are not co-ordinated with each other. However, recent studies indicate that, at least in budding yeast, a checkpoint called NoCut prevents abscission when spindle elongation is impaired, and might delay cytokinesis until all chromosomes are pulled out of the cleavage plane. Here, we discuss this possibility and summarize evidence suggesting that such a checkpoint is likely to be conserved in higher eukaryotes.

2006 ◽  
Vol 172 (6) ◽  
pp. 861-874 ◽  
Author(s):  
Jessica D. Tytell ◽  
Peter K. Sorger

Accurate chromosome segregation during mitosis requires biorientation of sister chromatids on the microtubules (MT) of the mitotic spindle. Chromosome–MT binding is mediated by kinetochores, which are multiprotein structures that assemble on centromeric (CEN) DNA. The simple CENs of budding yeast are among the best understood, but the roles of kinesin motor proteins at yeast kinetochores have yet to be determined, despite evidence of their importance in higher eukaryotes. We show that all four nuclear kinesins in Saccharomyces cerevisiae localize to kinetochores and function in three distinct processes. Kip1p and Cin8p, which are kinesin-5/BimC family members, cluster kinetochores into their characteristic bilobed metaphase configuration. Kip3p, a kinesin-8,-13/KinI kinesin, synchronizes poleward kinetochore movement during anaphase A. The kinesin-14 motor Kar3p appears to function at the subset of kinetochores that become detached from spindle MTs. These data demonstrate roles for structurally diverse motors in the complex processes of chromosome segregation and reveal important similarities and intriguing differences between higher and lower eukaryotes.


2001 ◽  
Vol 155 (5) ◽  
pp. 711-718 ◽  
Author(s):  
Fedor Severin ◽  
Anthony A. Hyman ◽  
Simonetta Piatti

At the metaphase to anaphase transition, chromosome segregation is initiated by the splitting of sister chromatids. Subsequently, spindles elongate, separating the sister chromosomes into two sets. Here, we investigate the cell cycle requirements for spindle elongation in budding yeast using mutants affecting sister chromatid cohesion or DNA replication. We show that separation of sister chromatids is not sufficient for proper spindle integrity during elongation. Rather, successful spindle elongation and stability require both sister chromatid separation and anaphase-promoting complex activation. Spindle integrity during elongation is dependent on proteolysis of the securin Pds1 but not on the activity of the separase Esp1. Our data suggest that stabilization of the elongating spindle at the metaphase to anaphase transition involves Pds1-dependent targets other than Esp1.


Genetics ◽  
2001 ◽  
Vol 159 (2) ◽  
pp. 453-470
Author(s):  
Sue Biggins ◽  
Needhi Bhalla ◽  
Amy Chang ◽  
Dana L Smith ◽  
Andrew W Murray

Abstract Accurate chromosome segregation requires the precise coordination of events during the cell cycle. Replicated sister chromatids are held together while they are properly attached to and aligned by the mitotic spindle at metaphase. At anaphase, the links between sisters must be promptly dissolved to allow the mitotic spindle to rapidly separate them to opposite poles. To isolate genes involved in chromosome behavior during mitosis, we microscopically screened a temperature-sensitive collection of budding yeast mutants that contain a GFP-marked chromosome. Nine LOC (loss of cohesion) complementation groups that do not segregate sister chromatids at anaphase were identified. We cloned the corresponding genes and performed secondary tests to determine their function in chromosome behavior. We determined that three LOC genes, PDS1, ESP1, and YCS4, are required for sister chromatid separation and three other LOC genes, CSE4, IPL1, and SMT3, are required for chromosome segregation. We isolated alleles of two genes involved in splicing, PRP16 and PRP19, which impair α-tubulin synthesis thus preventing spindle assembly, as well as an allele of CDC7 that is defective in DNA replication. We also report an initial characterization of phenotypes associated with the SMT3/SUMO gene and the isolation of WSS1, a high-copy smt3 suppressor.


2011 ◽  
Vol 22 (9) ◽  
pp. 1473-1485 ◽  
Author(s):  
Zuzana Storchová ◽  
Justin S. Becker ◽  
Nicolas Talarek ◽  
Sandra Kögelsberger ◽  
David Pellman

The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B–independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B–mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.


2011 ◽  
Vol 22 (14) ◽  
pp. 2448-2457 ◽  
Author(s):  
Erin L. Barnhart ◽  
Russell K. Dorer ◽  
Andrew W. Murray ◽  
Scott C. Schuyler

Chromosome segregation depends on the spindle checkpoint, which delays anaphase until all chromosomes have bound microtubules and have been placed under tension. The Mad1–Mad2 complex is an essential component of the checkpoint. We studied the consequences of removing one copy of MAD2 in diploid cells of the budding yeast, Saccharomyces cerevisiae. Compared to MAD2/MAD2 cells, MAD2/mad2Δ heterozygotes show increased chromosome loss and have different responses to two insults that activate the spindle checkpoint: MAD2/mad2Δ cells respond normally to antimicrotubule drugs but cannot respond to chromosomes that lack tension between sister chromatids. In MAD2/mad2Δ cells with normal sister chromatid cohesion, removing one copy of MAD1 restores the checkpoint and returns chromosome loss to wild-type levels. We conclude that cells need the normal Mad2:Mad1 ratio to respond to chromosomes that are not under tension.


2018 ◽  
Vol 1 (5) ◽  
pp. e201800143 ◽  
Author(s):  
Masashi Minamino ◽  
Torahiko L Higashi ◽  
Céline Bouchoux ◽  
Frank Uhlmann

The ring-shaped chromosomal cohesin complex holds sister chromatids together by topological embrace, a prerequisite for accurate chromosome segregation. Cohesin plays additional roles in genome organization, transcriptional regulation, and DNA repair. The cohesin ring includes an ABC family ATPase, but the molecular mechanism by which the ATPase contributes to cohesin function is not yet understood. In this study, we have purified budding yeast cohesin, as well as its Scc2–Scc4 cohesin loader complex, and biochemically reconstituted ATP-dependent topological cohesin loading onto DNA. Our results reproduce previous observations obtained using fission yeast cohesin, thereby establishing conserved aspects of cohesin behavior. Unexpectedly, we find that nonhydrolyzable ATP ground state mimetics ADP·BeF2, ADP·BeF3−, and ADP·AlFx, but not a hydrolysis transition state analog ADP·VO43−, support cohesin loading. The energy from nucleotide binding is sufficient to drive the DNA entry reaction into the cohesin ring. ATP hydrolysis, believed to be essential for in vivo cohesin loading, must serve a subsequent reaction step. These results provide molecular insights into cohesin function and open new experimental opportunities that the budding yeast model affords.


2011 ◽  
Vol 193 (2) ◽  
pp. 285-294 ◽  
Author(s):  
Daniel K. Rozelle ◽  
Scott D. Hansen ◽  
Kenneth B. Kaplan

During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)–dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit.


1997 ◽  
Vol 110 (15) ◽  
pp. 1805-1812 ◽  
Author(s):  
M.J. Moser ◽  
M.R. Flory ◽  
T.N. Davis

The essential calmodulin genes in both Saccharomyces cerevisiae and Schizosaccharomyces pombe were precisely replaced with genes encoding fusions between calmodulin and the green fluorescent protein (GFP). In living budding yeast the GFP-calmodulin fusion protein (GFP-Cmd1p) localized simultaneously to sites of cell growth and to the spindle pole body (SPB), the yeast analog of the centrosome. Having demonstrated proper localization of GFP-calmodulin in budding yeast, we examined the localization of a fusion between GFP and calmodulin (GFP-Camlp) in fission yeast, where calmodulin had not been localized by any method. We find GFP-Camlp also localizes both to sites of polarized cell growth and to the fission yeast SPB. The localization of calmodulin to the SPB by GFP fusion was confirmed by indirect immunofluorescence. Antiserum to S. pombe calmodulin labeled the ends of the mitotic spindle stained with anti-tubulin antiserum. This pattern was identical to that seen using antiserum to Sad1p, a known SPB component. We then characterized the defects in a temperature-sensitive S. pombe calmodulin mutant. Mutant cam1-E14 cells synchronized in S phase completed DNA synthesis, but lost viability during transit of mitosis. Severe defects in chromosome segregation, including hypercondensation, fragmentation, and unequal allocation of chromosomal material were observed. Immunofluorescence analysis of tubulin revealed a population of cells containing either broken or mislocalized mitotic spindles, which were never observed in wild-type cells. Taken together with the subcellular localization of calmodulin, the observed spindle and chromosome segregation defects suggest that calmodulin performs an essential role during mitosis at the fission yeast SPB.


Open Biology ◽  
2016 ◽  
Vol 6 (6) ◽  
pp. 150178 ◽  
Author(s):  
Maria Ocampo-Hafalla ◽  
Sofía Muñoz ◽  
Catarina P. Samora ◽  
Frank Uhlmann

The ring-shaped cohesin complex is thought to topologically hold sister chromatids together from their synthesis in S phase until chromosome segregation in mitosis. How cohesin stably binds to chromosomes for extended periods, without impeding other chromosomal processes that also require access to the DNA, is poorly understood. Budding yeast cohesin is loaded onto DNA by the Scc2–Scc4 cohesin loader at centromeres and promoters of active genes, from where cohesin translocates to more permanent places of residence at transcription termination sites. Here we show that, at the GAL2 and MET17 loci, pre-existing cohesin is pushed downstream along the DNA in response to transcriptional gene activation, apparently without need for intermittent dissociation or reloading. We observe translocation intermediates and find that the distribution of most chromosomal cohesin is shaped by transcription. Our observations support a model in which cohesin is able to slide laterally along chromosomes while maintaining topological contact with DNA. In this way, stable cohesin binding to DNA and enduring sister chromatid cohesion become compatible with simultaneous underlying chromosomal activities, including but maybe not limited to transcription.


Author(s):  
Arati Joshi ◽  
Meryl J Musicante ◽  
Bayly S Wheeler

Abstract Centromeres are essential for genetic inheritance—they prevent aneuploidy by providing a physical link between DNA and chromosome segregation machinery. In many organisms, centromeres form at sites of repetitive DNAs that help establish the chromatin architecture required for centromere function. These repeats are often rapidly evolving and subject to homogenization, which causes the expansion of novel repeats and sequence turnover. Thus, centromere sequence varies between individuals and across species. This variation can affect centromere function. We utilized Schizosaccharomyces pombe to assess the relationship between centromere sequence and structure and determine how sensitive this relationship is to genetic variation. In S. pombe, nucleating sequences within centromere repeats recruit heterochromatin via pathways that include the RNA-interference (RNAi) pathway. Heterochromatin, in turn, contributes to centromere function through its participation in three essential processes; establishment of a kinetochore, cohesion of sister chromatids, and suppression of recombination. Here, we show that a centromere element containing RevCen, a target of the RNAi pathway, establishes heterochromatin and gene silencing when relocated to a chromosome arm. Within this RevCen-containing element (RCE), a highly conserved domain is necessary for full heterochromatin nucleation but cannot establish heterochromatin independently. We characterize the ten unique RCEs in the S. pombe centromere assembly, which range from 60-100% identical, and show that all are sufficient to establish heterochromatin. These data affirm the importance of centromere repeats in establishing heterochromatin and suggest there is flexibility within the sequences that mediate this process. Such flexibility may preserve centromere function despite the rapid evolution of centromere repeats.


Sign in / Sign up

Export Citation Format

Share Document