scholarly journals The p25 subunit of the dynactin complex is required for dynein–early endosome interaction

2011 ◽  
Vol 193 (7) ◽  
pp. 1245-1255 ◽  
Author(s):  
Jun Zhang ◽  
Xuanli Yao ◽  
Lauren Fischer ◽  
Juan F. Abenza ◽  
Miguel A. Peñalva ◽  
...  

Cytoplasmic dynein transports various cellular cargoes including early endosomes, but how dynein is linked to early endosomes is unclear. We find that the Aspergillus nidulans orthologue of the p25 subunit of dynactin is critical for dynein-mediated early endosome movement but not for dynein-mediated nuclear distribution. In the absence of NUDF/LIS1, p25 deletion abolished the localization of dynein–dynactin to the hyphal tip where early endosomes abnormally accumulate but did not prevent dynein–dynactin localization to microtubule plus ends. Within the dynactin complex, p25 locates at the pointed end of the Arp1 filament with Arp11 and p62, and our data suggest that Arp11 but not p62 is important for p25–dynactin association. Loss of either Arp1 or p25 significantly weakened the physical interaction between dynein and early endosomes, although loss of p25 did not apparently affect the integrity of the Arp1 filament. These results indicate that p25, in conjunction with the rest of the dynactin complex, is important for dynein–early endosome interaction.

2015 ◽  
Vol 26 (21) ◽  
pp. 3816-3827 ◽  
Author(s):  
Xuanli Yao ◽  
Herbert N. Arst ◽  
Xiangfeng Wang ◽  
Xin Xiang

Early endosomes are transported bidirectionally by cytoplasmic dynein and kinesin-3, but how the movements are regulated in vivo remains unclear. Here our forward genetic study led to the discovery of VezA, a vezatin-like protein in Aspergillus nidulans, as a factor critical for early endosome distribution. Loss of vezA causes an abnormal accumulation of early endosomes at the hyphal tip, where microtubule plus ends are located. This abnormal accumulation depends on kinesin-3 and is due to a decrease in the frequency but not the speed of dynein-mediated early endosome movement. VezA-GFP signals are enriched at the hypha tip in an actin-dependent manner but are not obviously associated with early endosomes, thus differing from the early endosome association of the cargo adapter HookA (Hook in A. nidulans). On loss of VezA, HookA associates normally with early endosomes, but the interaction between dynein-dynactin and the early-endosome-bound HookA is significantly decreased. However, VezA is not required for linking dynein-dynactin to the cytosolic ∆C-HookA, lacking the cargo-binding C-terminus. These results identify VezA as a novel regulator required for the interaction between dynein and the Hook-bound early endosomes in vivo.


2014 ◽  
Vol 25 (14) ◽  
pp. 2181-2189 ◽  
Author(s):  
Xuanli Yao ◽  
Xiangfeng Wang ◽  
Xin Xiang

The minus end–directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA–early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA–early endosome association requires FhipA and HookA, FhipA–early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement.


2006 ◽  
Vol 17 (4) ◽  
pp. 2021-2034 ◽  
Author(s):  
Vladimir P. Efimov ◽  
Jun Zhang ◽  
Xin Xiang

Proteins in the cytoplasmic dynein pathway accumulate at the microtubule plus end, giving the appearance of comets when observed in live cells. The targeting mechanism for NUDF (LIS1/Pac1) of Aspergillus nidulans, a key component of the dynein pathway, has not been clear. Previous studies have demonstrated physical interactions of NUDF/LIS1/Pac1 with both NUDE/NUDEL/Ndl1 and CLIP-170/Bik1. Here, we have identified the A. nidulans CLIP-170 homologue, CLIPA. The clipA deletion did not cause an obvious nuclear distribution phenotype but affected cytoplasmic microtubules in an unexpected manner. Although more microtubules failed to undergo long-range growth toward the hyphal tip at 32°C, those that reached the hyphal tip were less likely to undergo catastrophe. Thus, in addition to acting as a growth-promoting factor, CLIPA also promotes microtubule dynamics. In the absence of CLIPA, green fluorescent protein-labeled cytoplasmic dynein heavy chain, p150Glued dynactin, and NUDF were all seen as plus-end comets at 32°C. However, under the same conditions, deletion of both clipA and nudE almost completely abolished NUDF comets, although nudE deletion itself did not cause a dramatic change in NUDF localization. Based on these results, we suggest that CLIPA and NUDE both recruit NUDF to the microtubule plus end. The plus-end localization of CLIPA itself seems to be regulated by different mechanisms under different physiological conditions. Although the KipA kinesin (Kip2/Tea2 homologue) did not affect plus-end localization of CLIPA at 32°C, it was required for enhancing plus-end accumulation of CLIPA at an elevated temperature (42°C).


1994 ◽  
Vol 127 (1) ◽  
pp. 139-149 ◽  
Author(s):  
M Plamann ◽  
P F Minke ◽  
J H Tinsley ◽  
K S Bruno

Cytoplasmic dynein is a multisubunit, microtubule-dependent mechanochemical enzyme that has been proposed to function in a variety of intracellular movements, including minus-end-directed transport of organelles. Dynein-mediated vesicle transport is stimulated in vitro by addition of the Glued/dynactin complex raising the possibility that these two complexes interact in vivo. We report here that a class of phenotypically identical mutants of the filamentous fungus Neurospora crassa are defective in genes encoding subunits of either cytoplasmic dynein or the Glued/dynactin complex. These mutants, defined as ropy, have curled hyphae with abnormal nuclear distribution. ro-1 encodes the heavy chain of cytoplasmic dynein, while ro-4 encodes an actin-related protein that is a probable homologue of the actin-related protein Arpl (formerly referred to as actin-RPV or centractin), the major component of the glued/dynactin complex. The phenotypes of ro-1 and ro-4 mutants suggest that cytoplasmic dynein, as well as the Glued/dynactin complex, are required to maintain uniform nuclear distribution in fungal hyphae. We propose that cytoplasmic dynein maintains nuclear distribution through sliding of antiparallel microtubules emanating from neighboring spindle pole bodies.


1996 ◽  
Vol 7 (5) ◽  
pp. 731-742 ◽  
Author(s):  
J H Tinsley ◽  
P F Minke ◽  
K S Bruno ◽  
M Plamann

Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.


2014 ◽  
Vol 204 (6) ◽  
pp. 1009-1026 ◽  
Author(s):  
Jun Zhang ◽  
Rongde Qiu ◽  
Herbert N. Arst ◽  
Miguel A. Peñalva ◽  
Xin Xiang

Cytoplasmic dynein transports membranous cargoes along microtubules, but the mechanism of dynein–cargo interaction is unclear. From a genetic screen, we identified a homologue of human Hook proteins, HookA, as a factor required for dynein-mediated early endosome movement in the filamentous fungus Aspergillus nidulans. HookA contains a putative N-terminal microtubule-binding domain followed by coiled-coil domains and a C-terminal cargo-binding domain, an organization reminiscent of cytoplasmic linker proteins. HookA–early endosome interaction occurs independently of dynein–early endosome interaction and requires the C-terminal domain. Importantly, HookA interacts with dynein and dynactin independently of HookA–early endosome interaction but dependent on the N-terminal part of HookA. Both dynein and the p25 subunit of dynactin are required for the interaction between HookA and dynein–dynactin, and loss of HookA significantly weakens dynein–early endosome interaction, causing a virtually complete absence of early endosome movement. Thus, HookA is a novel linker important for dynein–early endosome interaction in vivo.


Sign in / Sign up

Export Citation Format

Share Document