scholarly journals Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi.

1994 ◽  
Vol 127 (1) ◽  
pp. 139-149 ◽  
Author(s):  
M Plamann ◽  
P F Minke ◽  
J H Tinsley ◽  
K S Bruno

Cytoplasmic dynein is a multisubunit, microtubule-dependent mechanochemical enzyme that has been proposed to function in a variety of intracellular movements, including minus-end-directed transport of organelles. Dynein-mediated vesicle transport is stimulated in vitro by addition of the Glued/dynactin complex raising the possibility that these two complexes interact in vivo. We report here that a class of phenotypically identical mutants of the filamentous fungus Neurospora crassa are defective in genes encoding subunits of either cytoplasmic dynein or the Glued/dynactin complex. These mutants, defined as ropy, have curled hyphae with abnormal nuclear distribution. ro-1 encodes the heavy chain of cytoplasmic dynein, while ro-4 encodes an actin-related protein that is a probable homologue of the actin-related protein Arpl (formerly referred to as actin-RPV or centractin), the major component of the glued/dynactin complex. The phenotypes of ro-1 and ro-4 mutants suggest that cytoplasmic dynein, as well as the Glued/dynactin complex, are required to maintain uniform nuclear distribution in fungal hyphae. We propose that cytoplasmic dynein maintains nuclear distribution through sliding of antiparallel microtubules emanating from neighboring spindle pole bodies.

1996 ◽  
Vol 7 (5) ◽  
pp. 731-742 ◽  
Author(s):  
J H Tinsley ◽  
P F Minke ◽  
K S Bruno ◽  
M Plamann

Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.


1999 ◽  
Vol 147 (2) ◽  
pp. 321-334 ◽  
Author(s):  
N.J. Quintyne ◽  
S.R. Gill ◽  
D.M. Eckley ◽  
C.L. Crego ◽  
D.A. Compton ◽  
...  

The multiprotein complex, dynactin, is an integral part of the cytoplasmic dynein motor and is required for dynein-based motility in vitro and in vivo. In living cells, perturbation of the dynein–dynactin interaction profoundly blocks mitotic spindle assembly, and inhibition or depletion of dynein or dynactin from meiotic or mitotic cell extracts prevents microtubules from focusing into spindles. In interphase cells, perturbation of the dynein–dynactin complex is correlated with an inhibition of ER-to-Golgi movement and reorganization of the Golgi apparatus and the endosome–lysosome system, but the effects on microtubule organization have not previously been defined. To explore this question, we overexpressed a variety of dynactin subunits in cultured fibroblasts. Subunits implicated in dynein binding have effects on both microtubule organization and centrosome integrity. Microtubules are reorganized into unfocused arrays. The pericentriolar components, γ tubulin and dynactin, are lost from centrosomes, but pericentrin localization persists. Microtubule nucleation from centrosomes proceeds relatively normally, but microtubules become disorganized soon thereafter. Overexpression of some, but not all, dynactin subunits also affects endomembrane localization. These data indicate that dynein and dynactin play important roles in microtubule organization at centrosomes in fibroblastic cells and provide new insights into dynactin–cargo interactions.


1978 ◽  
Vol 30 (1) ◽  
pp. 331-352 ◽  
Author(s):  
B. Byers ◽  
K. Shriver ◽  
L. Goetsch

The spindle poles of the budding yeast, Saccharomyces cerevisiae, have been removed from mitotic and meiotic cells by osmotic lysis of spheroplasts. The spindle pole bodies (SPBs)—diskoidal structures also termed ‘spindle plaques’—have been analysed for their ability to potentiate the polymerization of microtubules in vitro. Free SPBs were completely deprived of any detectable native microtubules by incubation in the absence of added tubulin and were then challenged with chick neurotubulin, which had been rendered partially defective in self-initiation of repolymerization. Electron microscopy revealed that these SPBs served as foci for the initiation of microtubule polymerization in vitro. Because the attached microtubules elongated linearly with time but did not increase in numbers after the first stage of the reaction, it is apparent that there are a limited number of sites for initiation. The initiating potential of the SPBs was found to be inhibited by enzymic hydrolysis of protein but not of DNA. The microtubule end proximal to the site of initiation on the SPB is distinguished by a ‘closed’ appearance because of a terminal component which is continuous with the microtubule wall, whereas the distal end has the ‘open’ appearance characteristic of freely repolymerized neurotubules. SPBs which were partially purified on sucrose gradients retained their ability to initiate the assembly of microtubules with the same structural differentiation of their ends. The occurrence of closed proximal ends on native yeast microtubules suggests that closed ends may play a role in the initiation of microtubule polymerization in vivo, as well as in vitro.


2012 ◽  
Vol 23 (21) ◽  
pp. 4226-4241 ◽  
Author(s):  
Daniël Splinter ◽  
David S. Razafsky ◽  
Max A. Schlager ◽  
Andrea Serra-Marques ◽  
Ilya Grigoriev ◽  
...  

Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors.


1978 ◽  
Vol 78 (2) ◽  
pp. 401-414 ◽  
Author(s):  
J S Hyams ◽  
G G Borisy

Spindle pole bodies (SPBs) were isolated from the yeast Saccharomyces cerevisiae by an adaptation of the Kleinschmidt monolayer technique. Spheroplasts prepared from the cells were lysed on an air-water interface. Spread preparations were picked up on grids, transferred to experimental test solutions, and prepared for whole-mount electron microscopy. Using purified exogenous tubulin from porcine brain tissue, the isolated SPBs were shown to nucleate the assembly of microtubules in vitro. Microtubule growth was directional and primarily onto the intranuclear face of the SPB. Neither the morphology nor the microtubule-initiating capacity of the SPB was affected by treatment with the enzymes DNase, RNase, or phospholipase although both properties were sensitive to trypsin. Analysis of SPBs at various stages of the cell cycle showed that newly replicated SPBs had the capacity to nucleate microtubules. SPBs isolated from exponentially growing cells initiated a subset of the yeast spindle microtubules equivalent to the number of pole-to-pole microtubules seen in vivo. However, SPBs isolated from cells in stationary phase and therefore arrested in G1 nucleated a number of microtubules equal to the total chromosomal and pole-to-pole tubules in the yeast spindle. This may mean that in G1-arrested cells, the SPB is associated with microtubule attachment sites of the yeast chromatin.


2019 ◽  
Vol 30 (12) ◽  
pp. 1505-1522 ◽  
Author(s):  
Amanda C. Drennan ◽  
Shivaani Krishna ◽  
Mark A. Seeger ◽  
Michael P. Andreas ◽  
Jennifer M. Gardner ◽  
...  

Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.


2017 ◽  
Vol 28 (14) ◽  
pp. 1853-1861 ◽  
Author(s):  
Kimberly K. Fong ◽  
Krishna K. Sarangapani ◽  
Erik C. Yusko ◽  
Michael Riffle ◽  
Aida Llauró ◽  
...  

Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB–microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB–microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB–microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.


2021 ◽  
pp. 096032712110237
Author(s):  
L Zhou ◽  
S Li ◽  
J Sun

Endometrial cancer (EC) is the fourth most common malignancy in women in developed countries. The prognosis of EC is extremely poor, and it is an important factor that contributes to the death of patients. Therefore, studying EC pathogenesis and therapeutic targets, and exploring effective drugs are the primary tasks to improve the prognosis of EC. In the present study, we aimed to explore the function of ginkgolic acid (GA) in EC cell apoptosis and autophagy through PI3K/Akt/mTOR signal pathway in vitro and in vivo. Firstly, MTT assay and clone formation assay were employed to analyze the Ishikawa and HEC-1-B cell viabilities and proliferation after treatment with GA. The results showed that GA inhibited endometrial cancer cell survival. Flow cytometry assay and western blot assay were applied to examine the apoptosis and apoptosis related protein Bcl-2, Bax, Cleaved caspase-3 expression levels of Ishikawa and HEC-1-B cells after treatment with GA. Next, we applied western blot assay to analyze the autophagy associated proteins LC3I, LC3II, p62 and Beclin-1 in GA treated Ishikawa and HEC-1-B cells. We found that GA promoted apoptosis and induced autophagy of endometrial cancer cells. Meanwhile, western blot assay was also used to determine the expression levels of the PI3K/Akt/mTOR signal pathway related protein and the results revealed that GA inhibited the activity of PI3K/Akt/mTOR pathway. Finally, we found that GA inhibited tumor growth in vivo through immunohistochemistry assay. In conclusion, GA induces apoptosis and autophagy of EC cells via inhibiting PI3K/Akt/mTOR pathway in vivo and vitro.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Amber R Paulson ◽  
Maureen O’Callaghan ◽  
Xue-Xian Zhang ◽  
Paul B Rainey ◽  
Mark R H Hurst

Abstract The function of microbes can be inferred from knowledge of genes specifically expressed in natural environments. Here, we report the in vivo transcriptome of the entomopathogenic bacterium Yersinia entomophaga MH96, captured during initial, septicemic, and pre-cadaveric stages of intrahemocoelic infection in Galleria mellonella. A total of 1285 genes were significantly upregulated by MH96 during infection; 829 genes responded to in vivo conditions during at least one stage of infection, 289 responded during two stages of infection, and 167 transcripts responded throughout all three stages of infection compared to in vitro conditions at equivalent cell densities. Genes upregulated during the earliest infection stage included components of the insecticidal toxin complex Yen-TC (chi1, chi2, and yenC1), genes for rearrangement hotspot element containing protein yenC3, cytolethal distending toxin cdtAB, and vegetative insecticidal toxin vip2. Genes more highly expressed throughout the infection cycle included the putative heat-stable enterotoxin yenT and three adhesins (usher-chaperone fimbria, filamentous hemagglutinin, and an AidA-like secreted adhesin). Clustering and functional enrichment of gene expression data also revealed expression of genes encoding type III and VI secretion system-associated effectors. Together these data provide insight into the pathobiology of MH96 and serve as an important resource supporting efforts to identify novel insecticidal agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Diana P. Pires ◽  
Rodrigo Monteiro ◽  
Dalila Mil-Homens ◽  
Arsénio Fialho ◽  
Timothy K. Lu ◽  
...  

AbstractIn the era where antibiotic resistance is considered one of the major worldwide concerns, bacteriophages have emerged as a promising therapeutic approach to deal with this problem. Genetically engineered bacteriophages can enable enhanced anti-bacterial functionalities, but require cloning additional genes into the phage genomes, which might be challenging due to the DNA encapsulation capacity of a phage. To tackle this issue, we designed and assembled for the first time synthetic phages with smaller genomes by knocking out up to 48% of the genes encoding hypothetical proteins from the genome of the newly isolated Pseudomonas aeruginosa phage vB_PaeP_PE3. The antibacterial efficacy of the wild-type and the synthetic phages was assessed in vitro as well as in vivo using a Galleria mellonella infection model. Overall, both in vitro and in vivo studies revealed that the knock-outs made in phage genome do not impair the antibacterial properties of the synthetic phages, indicating that this could be a good strategy to clear space from phage genomes in order to enable the introduction of other genes of interest that can potentiate the future treatment of P. aeruginosa infections.


Sign in / Sign up

Export Citation Format

Share Document