scholarly journals Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore–microtubule attachments

2012 ◽  
Vol 199 (2) ◽  
pp. 285-301 ◽  
Author(s):  
Ana R.R. Maia ◽  
Zaira Garcia ◽  
Lilian Kabeche ◽  
Marin Barisic ◽  
Stefano Maffini ◽  
...  

Accurate chromosome segregation during mitosis relies on a dynamic kinetochore (KT)–microtubule (MT) interface that switches from a labile to a stable condition in response to correct MT attachments. This transition is essential to satisfy the spindle-assembly checkpoint (SAC) and couple MT-generated force with chromosome movements, but the underlying regulatory mechanism remains unclear. In this study, we show that during mitosis the MT- and KT-associated protein CLASP2 is progressively and distinctively phosphorylated by Cdk1 and Plk1 kinases, concomitant with the establishment of KT–MT attachments. CLASP2 S1234 was phosphorylated by Cdk1, which primed CLASP2 for association with Plk1. Plk1 recruitment to KTs was enhanced by CLASP2 phosphorylation on S1234. This was specifically required to stabilize KT–MT attachments important for chromosome alignment and to coordinate KT and non-KT MT dynamics necessary to maintain spindle bipolarity. CLASP2 C-terminal phosphorylation by Plk1 was also required for chromosome alignment and timely satisfaction of the SAC. We propose that Cdk1 and Plk1 mediate a fine CLASP2 “phospho-switch” that temporally regulates KT–MT attachment stability.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Changyin Zhou ◽  
Yilong Miao ◽  
Xue Zhang ◽  
Bo Xiong

Abstract Background In mitotic cells, WAPL acts as a cohesin release factor to remove cohesin complexes from chromosome arms during prophase to allow the accurate chromosome segregation in anaphase. However, we have recently documented that Wapl exerts a unique meiotic function in the spindle assembly checkpoint (SAC) control through maintaining Bub3 stability during mouse oocyte meiosis I. Whether this noncanonical function is conserved among species is still unknown. Methods We applied RNAi-based gene silencing approach to deplete WAPL in porcine oocytes, validating the conserved roles of WAPL in the regulation of SAC activity during mammalian oocyte maturation. We also employed immunostaining, immunoblotting and image quantification analyses to test the WAPL depletion on the meiotic progression, spindle assembly, chromosome alignment and dynamics of SAC protein in porcine oocytes. Results We showed that depletion of WAPL resulted in the accelerated meiotic progression by displaying the precocious polar body extrusion and compromised spindle assembly and chromosome alignment. Notably, we observed that the protein level of BUB3 was substantially reduced in WAPL-depleted oocytes, especially at kinetochores. Conclusions Collectively, our data demonstrate that WAPL participates in the porcine oocyte meiotic progression through maintenance of BUB3 protein levels and SAC activity. This meiotic function of WAPL in oocytes is highly conserved between pigs and mice.


2011 ◽  
Vol 44 (5) ◽  
pp. 391-400 ◽  
Author(s):  
P. Silva ◽  
J. Barbosa ◽  
A. V. Nascimento ◽  
J. Faria ◽  
R. Reis ◽  
...  

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Chia Huei Tan ◽  
Ivana Gasic ◽  
Sabina P Huber-Reggi ◽  
Damian Dudka ◽  
Marin Barisic ◽  
...  

Chromosome alignment in the middle of the bipolar spindle is a hallmark of metazoan cell divisions. When we offset the metaphase plate position by creating an asymmetric centriole distribution on each pole, we find that metaphase plates relocate to the middle of the spindle before anaphase. The spindle assembly checkpoint enables this centering mechanism by providing cells enough time to correct metaphase plate position. The checkpoint responds to unstable kinetochore–microtubule attachments resulting from an imbalance in microtubule stability between the two half-spindles in cells with an asymmetric centriole distribution. Inactivation of the checkpoint prior to metaphase plate centering leads to asymmetric cell divisions and daughter cells of unequal size; in contrast, if the checkpoint is inactivated after the metaphase plate has centered its position, symmetric cell divisions ensue. This indicates that the equatorial position of the metaphase plate is essential for symmetric cell divisions.


2019 ◽  
Vol 219 (2) ◽  
Author(s):  
Cai Liang ◽  
Zhenlei Zhang ◽  
Qinfu Chen ◽  
Haiyan Yan ◽  
Miao Zhang ◽  
...  

Aurora B kinase plays an essential role in chromosome bi-orientation, which is a prerequisite for equal segregation of chromosomes during mitosis. However, it remains largely unclear whether centromere-localized Aurora B is required for faithful chromosome segregation. Here we show that histone H3 Thr-3 phosphorylation (H3pT3) and H2A Thr-120 phosphorylation (H2ApT120) can independently recruit Aurora B. Disrupting H3pT3-mediated localization of Aurora B at the inner centromere impedes the decline in H2ApT120 during metaphase and causes H2ApT120-dependent accumulation of Aurora B at the kinetochore-proximal centromere. Consequently, silencing of the spindle assembly checkpoint (SAC) is delayed, whereas the fidelity of chromosome segregation is negligibly affected. Further eliminating an H2ApT120-dependent pool of Aurora B restores proper timing for SAC silencing but increases chromosome missegregation. Our data indicate that H2ApT120-mediated localization of Aurora B compensates for the loss of an H3pT3-dependent pool of Aurora B to correct improper kinetochore–microtubule attachments. This study provides important insights into how centromeric Aurora B regulates SAC and kinetochore attachment to microtubules to ensure error-free chromosome segregation.


2011 ◽  
Vol 22 (9) ◽  
pp. 1473-1485 ◽  
Author(s):  
Zuzana Storchová ◽  
Justin S. Becker ◽  
Nicolas Talarek ◽  
Sandra Kögelsberger ◽  
David Pellman

The conserved mitotic kinase Bub1 performs multiple functions that are only partially characterized. Besides its role in the spindle assembly checkpoint and chromosome alignment, Bub1 is crucial for the kinetochore recruitment of multiple proteins, among them Sgo1. Both Bub1 and Sgo1 are dispensable for growth of haploid and diploid budding yeast, but they become essential in cells with higher ploidy. We find that overexpression of SGO1 partially corrects the chromosome segregation defect of bub1Δ haploid cells and restores viability to bub1Δ tetraploid cells. Using an unbiased high-copy suppressor screen, we identified two members of the chromosomal passenger complex (CPC), BIR1 (survivin) and SLI15 (INCENP, inner centromere protein), as suppressors of the growth defect of both bub1Δ and sgo1Δ tetraploids, suggesting that these mutants die due to defects in chromosome biorientation. Overexpression of BIR1 or SLI15 also complements the benomyl sensitivity of haploid bub1Δ and sgo1Δ cells. Mutants lacking SGO1 fail to biorient sister chromatids attached to the same spindle pole (syntelic attachment) after nocodazole treatment. Moreover, the sgo1Δ cells accumulate syntelic attachments in unperturbed mitoses, a defect that is partially corrected by BIR1 or SLI15 overexpression. We show that in budding yeast neither Bub1 nor Sgo1 is required for CPC localization or affects Aurora B activity. Instead we identify Sgo1 as a possible partner of Mps1, a mitotic kinase suggested to have an Aurora B–independent function in establishment of biorientation. We found that Sgo1 overexpression rescues defects caused by metaphase inactivation of Mps1 and that Mps1 is required for Sgo1 localization to the kinetochore. We propose that Bub1, Sgo1, and Mps1 facilitate chromosome biorientation independently of the Aurora B–mediated pathway at the budding yeast kinetochore and that both pathways are required for the efficient turnover of syntelic attachments.


Genome ◽  
2012 ◽  
Vol 55 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Osamah Batiha ◽  
Andrew Swan

The spindle assembly checkpoint (SAC) plays an important role in mitotic cells to sense improper chromosome attachment to spindle microtubules and to inhibit APCFzy-dependent destruction of cyclin B and Securin; consequent initiation of anaphase until correct attachments are made. In Drosophila , SAC genes have been found to play a role in ensuring proper chromosome segregation in meiosis, possibly reflecting a similar role for the SAC in APCFzy inhibition during meiosis. We found that loss of function mutations in SAC genes, Mad2, zwilch, and mps1, do not lead to the predicted rise in APCFzy-dependent degradation of cyclin B either globally throughout the egg or locally on the meiotic spindle. Further, the SAC is not responsible for the inability of APCFzy to target cyclin B and promote anaphase in metaphase II arrested eggs from cort mutant females. Our findings support the argument that SAC proteins play checkpoint independent roles in Drosophila female meiosis and that other mechanisms must function to control APC activity.


2014 ◽  
Vol 206 (7) ◽  
pp. 833-842 ◽  
Author(s):  
Antonio Espert ◽  
Pelin Uluocak ◽  
Ricardo Nunes Bastos ◽  
Davinderpreet Mangat ◽  
Philipp Graab ◽  
...  

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


2018 ◽  
Author(s):  
Spyridon T. Pachis ◽  
Yoshitaka Hiruma ◽  
Anastassis Perrakis ◽  
Geert J.P.L. Kops

ABSTRACTFaithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until all chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to unattached kinetochores to initiate SAC signaling, and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here we show that a helical fragment within the kinetochore-targeting NTE module of MPS1 is required for interactions with kinetochores, and also forms intramolecular interactions with its adjacent TPR domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, ineffecient MPS1 delocalization from kinetochores upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MSP1-NDC80-C interactions.


2017 ◽  
Author(s):  
Jonathan Kuhn ◽  
Sophie Dumont

AbstractTo ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) prevents anaphase until all kinetochores attach to the spindle. What signals the SAC monitors remains unclear. We do not know the contributions of different microtubule attachment features, or tension from biorientation, to SAC satisfaction in normal mitosis - or how these possible cues change during attachment. Here, we quantify concurrent Mad1 intensity, reporting on SAC silencing, and real-time attachment geometry, occupancy, and tension at individual mammalian kinetochores. We show that Mad1 loss from the kinetochore occurs in switch-like events with robust kinetics, and that metaphase-like tension across sister kinetochores is established just before Mad1 loss events at the first sister. We demonstrate that CenpE-mediated lateral attachment of the second sister can persistently generate this metaphase-like tension prior to biorientation, likely stabilizing sister end-on attachment, yet cannot induce Mad1 loss from that kinetochore. Instead, Mad1 loss begins after several end-on microtubules attach. Thus, end-on attachment provides geometry-specific molecular cues, or force on specific kinetochore linkages, that other attachment geometries cannot provide.SummaryThe spindle assembly checkpoint (SAC) delays anaphase until kinetochores are properly attached to the spindle. The authors demonstrate that the SAC monitors geometry-specific molecular cues, or force on specific kinetochore linkages, that “end-on” but not “lateral” attachments generating persistent tension can provide.


Sign in / Sign up

Export Citation Format

Share Document