scholarly journals Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT

2013 ◽  
Vol 203 (5) ◽  
pp. 835-847 ◽  
Author(s):  
Crystal D. Rogers ◽  
Ankur Saxena ◽  
Marianne E. Bronner

The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT.

2021 ◽  
Author(s):  
Riley Galton ◽  
Katalin Fejes-Toth ◽  
Marianne E. Bronner

AbstractIn the metazoan germline, Piwi proteins play an essential regulatory role in maintenance of stemness and self-renewal by piRNA-mediated repression of transposable elements. To date, the activity of Piwi proteins and the piRNA pathway in vertebrates was believed to be confined to the gonads. Our results reveal expression of Piwil1 in a vertebrate somatic cell type, the neural crest–a migratory embryonic stem cell population. We show that Piwil1 is expressed at low levels throughout chick neural crest development, peaking just before neural crest cells undergo an epithelial-to-mesenchymal transition to leave the neural tube and migrate into the periphery. Importantly, loss of Piwil1 impedes neural crest emigration. Small RNA sequencing reveals somatic piRNAs with sequence signatures of an active ping pong loop. Coupled with Piwil1 knockout RNA-seq, our data suggest that Piwil1 regulates expression of the transposon derived gene ERNI in the chick dorsal neural tube, which in turn suppresses Sox2 expression to precisely control the timing of neural crest specification and emigration. Our work provides mechanistic insight into a novel function of the piRNA pathway as a regulator of somatic development in vertebrates.


2016 ◽  
Vol 215 (5) ◽  
pp. 735-747 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Vivien Xie ◽  
Lisa A. Taneyhill

During epithelial-to-mesenchymal transitions (EMTs), cells disassemble cadherin-based junctions to segregate from the epithelia. Chick premigratory cranial neural crest cells reduce Cadherin-6B (Cad6B) levels through several mechanisms, including proteolysis, to permit their EMT and migration. Serial processing of Cad6B by a disintegrin and metalloproteinase (ADAM) proteins and γ-secretase generates intracellular C-terminal fragments (CTF2s) that could acquire additional functions. Here we report that Cad6B CTF2 possesses a novel pro-EMT role by up-regulating EMT effector genes in vivo. After proteolysis, CTF2 remains associated with β-catenin, which stabilizes and redistributes both proteins to the cytosol and nucleus, leading to up-regulation of β-catenin, CyclinD1, Snail2, and Snail2 promoter-based GFP expression in vivo. A CTF2 β-catenin–binding mutant, however, fails to alter gene expression, indicating that CTF2 modulates β-catenin–responsive EMT effector genes. Notably, CTF2 association with the endogenous Snail2 promoter in the neural crest is β-catenin dependent. Collectively, our data reveal how Cad6B proteolysis orchestrates multiple pro-EMT regulatory inputs, including CTF2-mediated up-regulation of the Cad6B repressor Snail2, to ensure proper cranial neural crest EMT.


2018 ◽  
Vol 217 (10) ◽  
pp. 3683-3697 ◽  
Author(s):  
Erica J. Hutchins ◽  
Marianne E. Bronner

Neural crest cells undergo a spatiotemporally regulated epithelial-to-mesenchymal transition (EMT) that proceeds head to tailward to exit from the neural tube. In this study, we show that the secreted molecule Draxin is expressed in a transient rostrocaudal wave that mirrors this emigration pattern, initiating after neural crest specification and being down-regulated just before delamination. Functional experiments reveal that Draxin regulates the timing of cranial neural crest EMT by transiently inhibiting canonical Wnt signaling. Ectopic maintenance of Draxin in the cranial neural tube blocks full EMT; while cells delaminate, they fail to become mesenchymal and migratory. Loss of Draxin results in premature delamination but also in failure to mesenchymalize. These results suggest that a pulse of intermediate Wnt signaling triggers EMT and is necessary for its completion. Taken together, these data show that transient secreted Draxin mediates proper levels of canonical Wnt signaling required to regulate the precise timing of initiation and completion of cranial neural crest EMT.


Author(s):  
Victor K. Lin ◽  
Shih-Ya Wang ◽  
Lanxiao Wu ◽  
Smitha M. Rao ◽  
J. C. Chiao ◽  
...  

Epithelial to mesenchymal transition (EMT) has been believed to play a critical role in cancer metastasis. TGFβ has been described as an inducer of EMT in normal mammary epithelial cells by signaling through receptor serine/threonine kinase pathways to regulate epithelial cell plasticity and invasion. In this study, we investigated the EMT cellular responses, including morphologic changes, phenotype switches, invasiveness enhancement, and cellular contraction alteration, in TGFβ stimulated human prostate normal epithelial cells (PZ-HPV-7). Migration of TGFβ treated PZ-HPV-7 cells across matrigel was measured in invasion chambers (8 μm pore size). The cells were treated with or without TGFβ (2 ng/ml) in PrEGM media for 3 days. Immunoblot assay was conducted and it was demonstrated that the induction of vimentin when stimulated by TGFβ was accompanied by a downregulation of E-cadherin, though p-cadherin level was not altered. It was also observed that there was a decrease in cytokaretin 5/6 expression associated with the downregulation of E-cadherin during the induction of EMT. In order to study the cell contraction, three-dimensional collage lattice assay was performed. It was demonstrated that TGFβ-stimulated PZ-HPV-7 cells gained contractility. Our results showed that TGFβ stimulation induced PZ-HPV-7 cells to undergo epithelial to mesenchymal transition. EMT characteristics such as acquisition of mesenchymal markers and loss of epithelial markers were evident in the induction of vimentin and downregulation of E-cadherin and cytokeratins, as well as phenotypic alterations including increased contraction and enhanced mobility were detected.


Science ◽  
2018 ◽  
Vol 362 (6412) ◽  
pp. 339-343 ◽  
Author(s):  
Adam Shellard ◽  
András Szabó ◽  
Xavier Trepat ◽  
Roberto Mayor

Collective cell chemotaxis, the directed migration of cell groups along gradients of soluble chemical cues, underlies various developmental and pathological processes. We use neural crest cells, a migratory embryonic stem cell population whose behavior has been likened to malignant invasion, to study collective chemotaxis in vivo. StudyingXenopusand zebrafish, we have shown that the neural crest exhibits a tensile actomyosin ring at the edge of the migratory cell group that contracts in a supracellular fashion. This contractility is polarized during collective cell chemotaxis: It is inhibited at the front but persists at the rear of the cell cluster. The differential contractility drives directed collective cell migration ex vivo and in vivo through the intercalation of rear cells. Thus, in neural crest cells, collective chemotaxis works by rear-wheel drive.


2014 ◽  
Vol 25 (1) ◽  
pp. 41-54 ◽  
Author(s):  
Andrew T. Schiffmacher ◽  
Rangarajan Padmanabhan ◽  
Sharon Jhingory ◽  
Lisa A. Taneyhill

The epithelial-to-mesenchymal transition (EMT) is a highly coordinated process underlying both development and disease. Premigratory neural crest cells undergo EMT, migrate away from the neural tube, and differentiate into diverse cell types during vertebrate embryogenesis. Adherens junction disassembly within premigratory neural crest cells is one component of EMT and, in chick cranial neural crest cells, involves cadherin-6B (Cad6B) down-regulation. Whereas Cad6B transcription is repressed by Snail2, the rapid loss of Cad6B protein during EMT is suggestive of posttranslational mechanisms that promote Cad6B turnover. For the first time in vivo, we demonstrate Cad6B proteolysis during neural crest cell EMT, which generates a Cad6B N-terminal fragment (NTF) and two C-terminal fragments (CTF1/2). Coexpression of relevant proteases with Cad6B in vitro shows that a disintegrin and metalloproteinases (ADAMs) ADAM10 and ADAM19, together with γ-secretase, cleave Cad6B to produce the NTF and CTFs previously observed in vivo. Of importance, both ADAMs and γ-secretase are expressed in the appropriate spatiotemporal pattern in vivo to proteolytically process Cad6B. Overexpression or depletion of either ADAM within premigratory neural crest cells prematurely reduces or maintains Cad6B, respectively. Collectively these results suggest a dual mechanism for Cad6B proteolysis involving two ADAMs, along with γ-secretase, during cranial neural crest cell EMT.


2021 ◽  
pp. 1-22
Author(s):  
April Zhang ◽  
Hira Aslam ◽  
Neha Sharma ◽  
Aryeh Warmflash ◽  
Walid D. Fakhouri

Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.


Sign in / Sign up

Export Citation Format

Share Document