scholarly journals A regulatory motif in nonmuscle myosin II-B regulates its role in migratory front–back polarity

2015 ◽  
Vol 209 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Alba Juanes-Garcia ◽  
Jessica R. Chapman ◽  
Rocio Aguilar-Cuenca ◽  
Cristina Delgado-Arevalo ◽  
Jennifer Hodges ◽  
...  

In this study, we show that the role of nonmuscle myosin II (NMII)-B in front–back migratory cell polarity is controlled by a short stretch of amino acids containing five serines (1935–1941). This motif resides near the junction between the C terminus helical and nonhelical tail domains. Removal of this motif inhibited NMII-B assembly, whereas its insertion into NMII-A endowed an NMII-B–like ability to generate large actomyosin bundles that determine the rear of the cell. Phosphomimetic mutation of the five serines also inhibited NMII-B assembly, rendering it unable to support front–back polarization. Mass spectrometric analysis showed that several of these serines are phosphorylated in live cells. Single-site mutagenesis showed that serine 1935 is a major regulatory site of NMII-B function. These data reveal a novel regulatory mechanism of NMII in polarized migrating cells by identifying a key molecular determinant that confers NMII isoform functional specificity.

2011 ◽  
Vol 145 (2_suppl) ◽  
pp. P209-P210
Author(s):  
Elliott Kozin ◽  
Bechara Kachar ◽  
Felipe Salles ◽  
Robert Adelstein ◽  
Xuefei Ma ◽  
...  

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1845-1863
Author(s):  
Susan R Halsell ◽  
Daniel P Kiehart

Abstract Drosophila is an ideal metazoan model system for analyzing the role of nonmuscle myosin-II (henceforth, myosin) during development. In Drosophila, myosin function is required for cytokinesis and morphogenesis driven by cell migration and/or cell shape changes during oogenesis, embryogenesis, larval development and pupal metamorphosis. The mechanisms that regulate myosin function and the supramolecular structures into which myosin incorporates have not been systematically characterized. The genetic screens described here identify genomic regions that uncover loci that facilitate myosin function. The nonmuscle myosin heavy chain is encoded by a single locus, zipper. Contiguous chromosomal deficiencies that represent approximately 70% of the euchromatic genome were screened for genetic interactions with two recessive lethal alleles of zipper in a second-site noncomplementation assay for the malformed phenotype. Malformation in the adult leg reflects aberrations in cell shape changes driven by myosin-based contraction during leg morphogenesis. Of the 158 deficiencies tested, 47 behaved as second-site noncomplementors of zipper. Two of the deficiencies are strong interactors, 17 are intermediate and 28 are weak. Finer genetic mapping reveals that mutations in cytoplasmic tropomyosin and viking (collagen IV) behave as second-site noncomplementors of zipper during leg morphogenesis and that zipper function requires a previously uncharacterized locus, E3.10/J3.8, for leg morphogenesis and viability.


2017 ◽  
Vol 28 (8) ◽  
pp. 1034-1042 ◽  
Author(s):  
Sumit K. Dey ◽  
Raman K. Singh ◽  
Shyamtanu Chattoraj ◽  
Shekhar Saha ◽  
Alakesh Das ◽  
...  

Bleb formation has been correlated with nonmuscle myosin II (NM-II) activity. Whether three isoforms of NM-II (NM-IIA, -IIB and -IIC) have the same or differential roles in bleb formation is not well understood. Here we report that ectopically expressed, GFP-tagged NM-II isoforms exhibit different types of membrane protrusions, such as multiple blebs, lamellipodia, combinations of both, or absence of any such protrusions in MCF-7 cells. Quantification suggests that 50% of NM-IIA-GFP–, 29% of NM-IIB-GFP–, and 19% of NM-IIC1-GFP–expressing MCF-7 cells show multiple bleb formation, compared with 36% of cells expressing GFP alone. Of interest, NM-IIB has an almost 50% lower rate of dissociation from actin filament than NM-IIA and –IIC1 as determined by FRET analysis both at cell and bleb cortices. We induced bleb formation by disruption of the cortex and found that all three NM-II-GFP isoforms can reappear and form filaments but to different degrees in the growing bleb. NM-IIB-GFP can form filaments in blebs in 41% of NM-IIB-GFP–expressing cells, whereas filaments form in only 12 and 3% of cells expressing NM-IIA-GFP and NM-IIC1-GFP, respectively. These studies suggest that NM-II isoforms have differential roles in the bleb life cycle.


Blood ◽  
2014 ◽  
Vol 124 (16) ◽  
pp. 2564-2568 ◽  
Author(s):  
Idinath Badirou ◽  
Jiajia Pan ◽  
Céline Legrand ◽  
Aibing Wang ◽  
Larissa Lordier ◽  
...  

Key Points C-terminal domain determines myosin II localization to the MK contractile ring and the specific role of NMII-B in MK polyploidization.


Author(s):  
Tom Kaufmann ◽  
Ulrich S. Schwarz

AbstractRecent experiments with super-resolution live cell microscopy revealed that nonmuscle myosin II minifilaments are much more dynamic than formerly appreciated, often showing plastic processes such as splitting, concatenation and stacking. Here we combine sequence information, electrostatics and elasticity theory to demonstrate that the parallel staggers at 14.3, 43.2 and 72 nm have a strong tendency to splay their heads away from the minifilament, thus potentially initiating the diverse processes seen in live cells. In contrast, the straight antiparallel stagger with an overlap of 43 nm is very stable and likely initiates minifilament nucleation. Using stochastic dynamics in a newly defined energy landscape, we predict that the optimal parallel staggers between the myosin rods are obtained by a trial-and-error process in which two rods attach and re-attach at different staggers by rolling and zipping motion. The experimentally observed staggers emerge as the configurations with the largest contact times. We find that contact times increase from isoforms C to B to A, that A-B-heterodimers are surprisingly stable and that myosin 18A should incorporate into mixed filaments with a small stagger. Our findings suggest that nonmuscle myosin II minifilaments in the cell are first formed by isoform A and then convert to mixed A-B-filaments, as observed experimentally.Author summaryNonmuscle myosin II (NM2) is a non-processive molecular motor that assembles into minifilaments with a typical size of 300 nm to generate force and motion in the actin cytoskeleton. This process is essential for many cellular processes such as adhesion, migration, division and mechanosensing. Due to their small size below the resolution limit, minifilaments are a challenge for imaging with traditional light microscopy. With the advent of super-resolution microscopy, however, it has become apparent that the formation of NM2-minifilaments is much more dynamic than formerly appreciated. Modeling the electrostatic interaction between the rigid rods of the myosin monomers has confirmed the main staggers observed in experiments, but cannot explain these high dynamics. Here we complement electrostatics by elasticity theory and stochastic dynamics to show that the parallel staggers are likely to splay away from the main axis of the minifilament and that monomers attach and deattach with rolling and zipping motions. Based on the sequences of the different NM2-isoforms, we predict that isoform A forms the most stable homofilaments and that A-B-heterofilaments are also very stable.


2007 ◽  
Vol 46 ◽  
pp. S130 ◽  
Author(s):  
Z.A. Liu ◽  
H. Reynaert ◽  
E. Van Rossen ◽  
B. Schroyen ◽  
L. van Grunsven ◽  
...  

2017 ◽  
Vol 216 (7) ◽  
pp. 1925-1936 ◽  
Author(s):  
Oleg Milberg ◽  
Akiko Shitara ◽  
Seham Ebrahim ◽  
Andrius Masedunskas ◽  
Muhibullah Tora ◽  
...  

Membrane remodeling plays a fundamental role during a variety of biological events. However, the dynamics and the molecular mechanisms regulating this process within cells in mammalian tissues in situ remain largely unknown. In this study, we use intravital subcellular microscopy in live mice to study the role of the actomyosin cytoskeleton in driving the remodeling of membranes of large secretory granules, which are integrated into the plasma membrane during regulated exocytosis. We show that two isoforms of nonmuscle myosin II, NMIIA and NMIIB, control distinct steps of the integration process. Furthermore, we find that F-actin is not essential for the recruitment of NMII to the secretory granules but plays a key role in the assembly and activation of NMII into contractile filaments. Our data support a dual role for the actomyosin cytoskeleton in providing the mechanical forces required to remodel the lipid bilayer and serving as a scaffold to recruit key regulatory molecules.


2007 ◽  
Vol 178 (7) ◽  
pp. 1177-1191 ◽  
Author(s):  
Morgan B. Goulding ◽  
Julie C. Canman ◽  
Eric N. Senning ◽  
Andrew H. Marcus ◽  
Bruce Bowerman

Mitotic spindle positioning in the Caenorhabditis elegans zygote involves microtubule-dependent pulling forces applied to centrosomes. In this study, we investigate the role of actomyosin in centration, the movement of the nucleus–centrosome complex (NCC) to the cell center. We find that the rate of wild-type centration depends equally on the nonmuscle myosin II NMY-2 and the Gα proteins GOA-1/GPA-16. In centration- defective let-99(−) mutant zygotes, GOA-1/GPA-16 and NMY-2 act abnormally to oppose centration. This suggests that LET-99 determines the direction of a force on the NCC that is promoted by Gα signaling and actomyosin. During wild-type centration, NMY-2–GFP aggregates anterior to the NCC tend to move further anterior, suggesting that actomyosin contraction could pull the NCC. In GOA-1/GPA-16–depleted zygotes, NMY-2 aggregate displacement is reduced and largely randomized, whereas in a let-99(−) mutant, NMY-2 aggregates tend to make large posterior displacements. These results suggest that Gα signaling and LET-99 control centration by regulating polarized actomyosin contraction.


2015 ◽  
Vol 29 (S1) ◽  
Author(s):  
Shekhar Saha ◽  
Shyamtanu Chattoraj ◽  
Debdatta Halder ◽  
Swagata Goswami ◽  
Kankan Bhattacharyya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document