scholarly journals The seipin complex Fld1/Ldb16 stabilizes ER–lipid droplet contact sites

2015 ◽  
Vol 211 (4) ◽  
pp. 829-844 ◽  
Author(s):  
Alexandra Grippa ◽  
Laura Buxó ◽  
Gabriel Mora ◽  
Charlotta Funaya ◽  
Fatima-Zahra Idrissi ◽  
...  

Lipid droplets (LDs) are storage organelles consisting of a neutral lipid core surrounded by a phospholipid monolayer and a set of LD-specific proteins. Most LD components are synthesized in the endoplasmic reticulum (ER), an organelle that is often physically connected with LDs. How LD identity is established while maintaining biochemical and physical connections with the ER is not known. Here, we show that the yeast seipin Fld1, in complex with the ER membrane protein Ldb16, prevents equilibration of ER and LD surface components by stabilizing the contact sites between the two organelles. In the absence of the Fld1/Ldb16 complex, assembly of LDs results in phospholipid packing defects leading to aberrant distribution of lipid-binding proteins and abnormal LDs. We propose that the Fld1/Ldb16 complex facilitates the establishment of LD identity by acting as a diffusion barrier at the ER–LD contact sites.

Contact ◽  
2018 ◽  
Vol 1 ◽  
pp. 251525641875611 ◽  
Author(s):  
W. Mike Henne ◽  
Hanaa Hariri

Lipid droplets (LDs) serve as specialized cytoplasmic organelles that harbor energy-rich lipids for long-term storage and may be mobilized as nutrient sources during extended starvation. How cells coordinate LD biogenesis and utilization in response to fluctuations in nutrient availability remains poorly understood. Here, we discuss our recent work revealing how yeast spatially organize LD budding at organelle contacts formed between the endoplasmic reticulum and yeast vacuole/lysosome (sites known as nucleus-vacuole junctions [NVJs]). During times of imminent nutrient exhaustion, we observe blooms of stress-induced LDs surrounding the NVJ and find that this LD clustering is regulated by NVJ-resident protein Mdm1. We also discuss several emerging studies revealing specific proteins that demarcate a subpopulation of NVJ-associated LDs. Collectively, these studies reveal a previously unappreciated role for the spatial compartmentalization of LDs at organelle contacts and highlight an important role for interorganellar cross talk in LD dynamics under times of nutritional stress.


2019 ◽  
Vol 219 (1) ◽  
Author(s):  
Ximing Du ◽  
Linkang Zhou ◽  
Yvette Celine Aw ◽  
Hoi Yin Mak ◽  
Yanqing Xu ◽  
...  

Lipid droplets (LDs) are evolutionarily conserved organelles that play important roles in cellular metabolism. Each LD is enclosed by a monolayer of phospholipids, distinct from bilayer membranes. During LD biogenesis and growth, this monolayer of lipids expands by acquiring phospholipids from the endoplasmic reticulum (ER) through nonvesicular mechanisms. Here, in a mini-screen, we find that ORP5, an integral membrane protein of the ER, can localize to ER–LD contact sites upon oleate loading. ORP5 interacts with LDs through its ligand-binding domain, and ORP5 deficiency enhances neutral lipid synthesis and increases the size of LDs. Importantly, there is significantly more phosphatidylinositol-4-phosphate (PI(4)P) and less phosphatidylserine (PS) on LDs in ORP5-deficient cells than in normal cells. The increased presence of PI(4)P on LDs in ORP5-deficient cells requires phosphatidylinositol 4-kinase 2-α. Our results thus demonstrate the existence of PI(4)P on LDs and suggest that LD-associated PI(4)P may be primarily used by ORP5 to deliver PS to LDs.


2017 ◽  
Vol 91 (6) ◽  
Author(s):  
Nicholas L. Cianciola ◽  
Stacey Chung ◽  
Danny Manor ◽  
Cathleen R. Carlin

ABSTRACT Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich “lipid rafts.” Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes. IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune-mediated pathology have been a particularly rich source of information regarding intracellular protein trafficking. Our studies with the early region 3-encoded RIDα protein also provided fundamental new information regarding mechanisms of nonvesicular lipid transport and the flow of molecular information at membrane contacts between different organelles. We describe a new pathway that delivers cholesterol from endosomes to the endoplasmic reticulum, where it is esterified and stored in lipid droplets. Although lipid droplets are attracting renewed interest from the standpoint of normal physiology and human diseases, including those resulting from viral infections, experimental model systems for evaluating how and why they accumulate are still limited. Our studies also revealed an intriguing relationship between lipid droplets and innate immunity that may represent a new paradigm for viruses utilizing these organelles.


2020 ◽  
Vol 133 (16) ◽  
pp. jcs246983 ◽  
Author(s):  
Fei Wu ◽  
Rinse de Boer ◽  
Arjen M. Krikken ◽  
Arman Akşit ◽  
Nicola Bordin ◽  
...  

ABSTRACTThe yeast Hansenula polymorpha contains four members of the Pex23 family of peroxins, which characteristically contain a DysF domain. Here we show that all four H. polymorpha Pex23 family proteins localize to the endoplasmic reticulum (ER). Pex24 and Pex32, but not Pex23 and Pex29, predominantly accumulate at peroxisome–ER contacts. Upon deletion of PEX24 or PEX32 – and to a much lesser extent, of PEX23 or PEX29 – peroxisome–ER contacts are lost, concomitant with defects in peroxisomal matrix protein import, membrane growth, and organelle proliferation, positioning and segregation. These defects are suppressed by the introduction of an artificial peroxisome–ER tether, indicating that Pex24 and Pex32 contribute to tethering of peroxisomes to the ER. Accumulation of Pex32 at these contact sites is lost in cells lacking the peroxisomal membrane protein Pex11, in conjunction with disruption of the contacts. This indicates that Pex11 contributes to Pex32-dependent peroxisome–ER contact formation. The absence of Pex32 has no major effect on pre-peroxisomal vesicles that occur in pex3 atg1 deletion cells.


Contact ◽  
2019 ◽  
Vol 2 ◽  
pp. 251525641988313 ◽  
Author(s):  
John A. Slee ◽  
Timothy P. Levine

The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its interorganelle connections and the proteins that form bridges are not well known. The integral ER membrane protein vesicle-associated membrane protein-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of “two phenylalanines in an acidic tract” (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly interorganelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here, we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting that this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50 to 55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in interorganelle communication. Many of these can target well-characterized membrane contact sites; however, some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER–nucleolus and ER–eisosome routes of interorganelle communication.


2011 ◽  
Vol 192 (6) ◽  
pp. 1043-1055 ◽  
Author(s):  
Oludotun Adeyo ◽  
Patrick J. Horn ◽  
SungKyung Lee ◽  
Derk D. Binns ◽  
Anita Chandrahas ◽  
...  

Lipins are phosphatidate phosphatases that generate diacylglycerol (DAG). In this study, we report that yeast lipin, Pah1p, controls the formation of cytosolic lipid droplets. Disruption of PAH1 resulted in a 63% decrease in droplet number, although total neutral lipid levels did not change. This was accompanied by an accumulation of neutral lipids in the endoplasmic reticulum (ER). The droplet biogenesis defect was not a result of alterations in neutral lipid ratios. No droplets were visible in the absence of both PAH1 and steryl acyltransferases when grown in glucose medium, even though the strain produces as much triacylglycerol as wild type. The requirement of PAH1 for normal droplet formation can be bypassed by a knockout of DGK1. Nem1p, the activator of Pah1p, localizes to a single punctum per cell on the ER that is usually next to a droplet, suggesting that it is a site of droplet assembly. Overall, this study provides strong evidence that DAG generated by Pah1p is important for droplet biogenesis.


Author(s):  
Vineet Choudhary ◽  
Roger Schneiter

Lipid droplets (LDs) constitute compartments dedicated to the storage of metabolic energy in the form of neutral lipids. LDs originate from the endoplasmic reticulum (ER) with which they maintain close contact throughout their life cycle. These ER–LD junctions facilitate the exchange of both proteins and lipids between these two compartments. In recent years, proteins that are important for the proper formation of LDs and localize to ER–LD junctions have been identified. This junction is unique as it is generally believed to invoke a transition from the ER bilayer membrane to a lipid monolayer that delineates LDs. Proper formation of this junction requires the ordered assembly of proteins and lipids at specialized ER subdomains. Without such a well-ordered assembly of LD biogenesis factors, neutral lipids are synthesized throughout the ER membrane, resulting in the formation of aberrant LDs. Such ectopically formed LDs impact ER and lipid homeostasis, resulting in different types of lipid storage diseases. In response to starvation, the ER–LD junction recruits factors that tether the vacuole to these junctions to facilitate LD degradation. In addition, LDs maintain close contacts with peroxisomes and mitochondria for metabolic channeling of the released fatty acids toward beta-oxidation. In this review, we discuss the function of different components that ensure proper functioning of LD contact sites, their role in lipogenesis and lipolysis, and their relation to lipid storage diseases.


2021 ◽  
pp. mbc.E20-09-0590
Author(s):  
Amit S. Joshi ◽  
Joey V. Ragusa ◽  
William A. Prinz ◽  
Sarah Cohen

Lipid droplets (LDs) are neutral lipid-containing organelles enclosed in a single monolayer of phospholipids. LD formation begins with the accumulation of neutral lipids within the bilayer of the endoplasmic reticulum (ER) membrane. It is not known how the sites of formation of nascent LDs in the ER membrane are determined. Here we show that multiple C2 domain-containing transmembrane proteins, MCTP1 and MCTP2, are at sites of LD formation in specialized ER subdomains. We show that the transmembrane domain (TMD) of these proteins is similar to a reticulon homology domain. Like reticulons, these proteins tubulate the ER membrane and favor highly curved regions of the ER. Our data indicate that the MCTP TMDs promote LD biogenesis, increasing LD number. MCTPs co-localize with seipin, a protein involved in LD biogenesis, but form more stable microdomains in the ER. The MCTP C2 domains bind charged lipids and regulate LD size, likely by mediating ER-LD contact sites. Together, our data indicate that MCTPs form microdomains within ER tubules that regulate LD biogenesis, size, and ER-LD contacts. Interestingly, MCTP punctae colocalized with other organelles as well, suggesting that these proteins may play a more general role in linking tubular ER to organelle contact sites. [Media: see text] [Media: see text]


Sign in / Sign up

Export Citation Format

Share Document