scholarly journals Brr6 and Brl1 locate to nuclear pore complex assembly sites to promote their biogenesis

2018 ◽  
Vol 217 (3) ◽  
pp. 877-894 ◽  
Author(s):  
Wanlu Zhang ◽  
Annett Neuner ◽  
Diana Rüthnick ◽  
Timo Sachsenheimer ◽  
Christian Lüchtenborg ◽  
...  

The paralogous Brr6 and Brl1 are conserved integral membrane proteins of the nuclear envelope (NE) with an unclear role in nuclear pore complex (NPC) biogenesis. Here, we analyzed double-degron mutants of Brr6/Brl1 to understand this function. Depletion of Brr6 and Brl1 caused defects in NPC biogenesis, whereas the already assembled NPCs remained unaffected. This NPC biogenesis defect was not accompanied by a change in lipid composition. However, Brl1 interacted with Ndc1 and Nup188 by immunoprecipitation, and with transmembrane and outer and inner ring NPC components by split yellow fluorescent protein analysis, indicating a direct role in NPC biogenesis. Consistently, we found that Brr6 and Brl1 associated with a subpopulation of NPCs and emerging NPC assembly sites. Moreover, BRL1 overexpression affected NE morphology without a change in lipid composition and completely suppressed the nuclear pore biogenesis defect of nup116Δ and gle2Δ cells. We propose that Brr6 and Brl1 transiently associate with NPC assembly sites where they promote NPC biogenesis.

1997 ◽  
Vol 137 (6) ◽  
pp. 1199-1210 ◽  
Author(s):  
Li Yang ◽  
Tinglu Guan ◽  
Larry Gerace

We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.


Nucleus ◽  
2012 ◽  
Vol 3 (4) ◽  
pp. 322-329 ◽  
Author(s):  
Anne C. Meinema ◽  
Bert Poolman ◽  
Liesbeth M. Veenhoff

2009 ◽  
Vol 123 (1) ◽  
pp. 141-151 ◽  
Author(s):  
C. A. Hodge ◽  
V. Choudhary ◽  
M. J. Wolyniak ◽  
J. J. Scarcelli ◽  
R. Schneiter ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 562
Author(s):  
Miliça Ristovski ◽  
Danny Farhat ◽  
Shelly Ellaine M. Bancud ◽  
Jyh-Yeuan Lee

Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.


Nucleus ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 105-114 ◽  
Author(s):  
Michaela Clever ◽  
Yasuhiro Mimura ◽  
Tomoko Funakoshi ◽  
Naoko Imamoto

2009 ◽  
Vol 185 (3) ◽  
pp. 475-491 ◽  
Author(s):  
Evgeny Onischenko ◽  
Leslie H. Stanton ◽  
Alexis S. Madrid ◽  
Thomas Kieselbach ◽  
Karsten Weis

The nuclear pore complex (NPC) mediates all nucleocytoplasmic transport, yet its structure and biogenesis remain poorly understood. In this study, we have functionally characterized interaction partners of the yeast transmembrane nucleoporin Ndc1. Ndc1 forms a distinct complex with the transmembrane proteins Pom152 and Pom34 and two alternative complexes with the soluble nucleoporins Nup53 and Nup59, which in turn bind to Nup170 and Nup157. The transmembrane and soluble Ndc1-binding partners have redundant functions at the NPC, and disruption of both groups of interactions causes defects in Ndc1 targeting and in NPC structure accompanied by significant pore dilation. Using photoconvertible fluorescent protein fusions, we further show that the depletion of Pom34 in cells that lack NUP53 and NUP59 blocks new NPC assembly and leads to the reversible accumulation of newly made nucleoporins in cytoplasmic foci. Therefore, Ndc1 together with its interaction partners are collectively essential for the biosynthesis and structural integrity of yeast NPCs.


2009 ◽  
Vol 20 (2) ◽  
pp. 616-630 ◽  
Author(s):  
Hui-Lin Liu ◽  
Colin P.C. De Souza ◽  
Aysha H. Osmani ◽  
Stephen A. Osmani

In Aspergillus nidulans nuclear pore complexes (NPCs) undergo partial mitotic disassembly such that 12 NPC proteins (Nups) form a core structure anchored across the nuclear envelope (NE). To investigate how the NPC core is maintained, we affinity purified the major core An-Nup84-120 complex and identified two new fungal Nups, An-Nup37 and An-ELYS, previously thought to be vertebrate specific. During mitosis the An-Nup84-120 complex locates to the NE and spindle pole bodies but, unlike vertebrate cells, does not concentrate at kinetochores. We find that mutants lacking individual An-Nup84-120 components are sensitive to the membrane destabilizer benzyl alcohol (BA) and high temperature. Although such mutants display no defects in mitotic spindle formation, they undergo mitotic specific disassembly of the NPC core and transient aggregation of the mitotic NE, suggesting the An-Nup84-120 complex might function with membrane. Supporting this, we show cells devoid of all known fungal transmembrane Nups (An-Ndc1, An-Pom152, and An-Pom34) are viable but that An-ndc1 deletion combined with deletion of individual An-Nup84-120 components is either lethal or causes sensitivity to treatments expected to destabilize membrane. Therefore, the An-Nup84-120 complex performs roles, perhaps at the NPC membrane as proposed previously, that become essential without the An-Ndc1 transmembrane Nup.


2001 ◽  
Vol 152 (2) ◽  
pp. 385-400 ◽  
Author(s):  
Patrick Heun ◽  
Thierry Laroche ◽  
M.K. Raghuraman ◽  
Susan M. Gasser

We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)–tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.


1992 ◽  
Vol 119 (6) ◽  
pp. 1441-1449 ◽  
Author(s):  
R W Wozniak ◽  
G Blobel

The glycoprotein gp210 is located in the "pore membrane," a specialized domain of the nuclear envelope to which the nuclear pore complex (NPC) is anchored. gp210 contains a large cisternal domain, a single transmembrane segment (TM), and a COOH-terminal, 58-amino acid residue cytoplasmic tail (CT) (Wozniak, R. W., E. Bartnik, and G. Blobel. 1989. J. Cell Biol. 108:2083-2092; Greber, U. F., A. Senior, and L. Gerace. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:1495-1502). To locate determinants for sorting of gp210 to the pore membrane, we constructed various cDNAs coding for wild-type, mutant, and chimeric gp210, and monitored localization of the expressed protein in 3T3 cells by immunofluorescence microscopy using appropriate antibodies. The large cisternal domain of gp210 (95% of its mass) did not reveal any sorting determinants. Surprisingly, the TM of gp210 is sufficient for sorting to the pore membrane. The CT also contains a sorting determinant, but it is weaker than that of the TM. We propose specific lateral association of the transmembrane helices of two proteins to yield either a gp210 homodimer or a heterodimer of gp210 and another protein. The cytoplasmically oriented tails of these dimers may bind cooperatively to the adjacent NPCs. In addition, we demonstrate that gp210 co-localizes with cytoplasmically dispersed nucleoporins, suggesting a cytoplasmic association of these components.


Sign in / Sign up

Export Citation Format

Share Document