scholarly journals ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ

2019 ◽  
Vol 218 (5) ◽  
pp. 1634-1652 ◽  
Author(s):  
Delphine Judith ◽  
Harold B.J. Jefferies ◽  
Stefan Boeing ◽  
David Frith ◽  
Ambrosius P. Snijders ◽  
...  

ATG9A is a multispanning membrane protein essential for autophagy. Normally resident in Golgi membranes and endosomes, during amino acid starvation, ATG9A traffics to sites of autophagosome formation. ATG9A is not incorporated into autophagosomes but is proposed to supply so-far-unidentified proteins and lipids to the autophagosome. To address this function of ATG9A, a quantitative analysis of ATG9A-positive compartments immunoisolated from amino acid–starved cells was performed. These ATG9A vesicles are depleted of Golgi proteins and enriched in BAR-domain containing proteins, Arfaptins, and phosphoinositide-metabolizing enzymes. Arfaptin2 regulates the starvation-dependent distribution of ATG9A vesicles, and these ATG9A vesicles deliver the PI4-kinase, PI4KIIIβ, to the autophagosome initiation site. PI4KIIIβ interacts with ATG9A and ATG13 to control PI4P production at the initiation membrane site and the autophagic response. PI4KIIIβ and PI4P likely function by recruiting the ULK1/2 initiation kinase complex subunit ATG13 to nascent autophagosomes.

2008 ◽  
Vol 182 (4) ◽  
pp. 685-701 ◽  
Author(s):  
Elizabeth L. Axe ◽  
Simon A. Walker ◽  
Maria Manifava ◽  
Priya Chandra ◽  
H. Llewelyn Roderick ◽  
...  

Autophagy is the engulfment of cytosol and organelles by double-membrane vesicles termed autophagosomes. Autophagosome formation is known to require phosphatidylinositol 3-phosphate (PI(3)P) and occurs near the endoplasmic reticulum (ER), but the exact mechanisms are unknown. We show that double FYVE domain–containing protein 1, a PI(3)P-binding protein with unusual localization on ER and Golgi membranes, translocates in response to amino acid starvation to a punctate compartment partially colocalized with autophagosomal proteins. Translocation is dependent on Vps34 and beclin function. Other PI(3)P-binding probes targeted to the ER show the same starvation-induced translocation that is dependent on PI(3)P formation and recognition. Live imaging experiments show that this punctate compartment forms near Vps34-containing vesicles, is in dynamic equilibrium with the ER, and provides a membrane platform for accumulation of autophagosomal proteins, expansion of autophagosomal membranes, and emergence of fully formed autophagosomes. This PI(3)P-enriched compartment may be involved in autophagosome biogenesis. Its dynamic relationship with the ER is consistent with the idea that the ER may provide important components for autophagosome formation.


2018 ◽  
Vol 38 (10) ◽  
Author(s):  
Chinwendu Nwadike ◽  
Leon E. Williamson ◽  
Laura E. Gallagher ◽  
Jun-Lin Guan ◽  
Edmond Y. W. Chan

ABSTRACT Autophagy maintains metabolism in response to starvation, but each nutrient is sensed distinctly. Amino acid deficiency suppresses mechanistic target of rapamycin complex 1 (MTORC1), while glucose deficiency promotes AMP-activated protein kinase (AMPK). The MTORC1 and AMPK signaling pathways converge onto the ULK1/2 autophagy initiation complex. Here, we show that amino acid starvation promoted formation of ULK1- and sequestosome 1/p62-positive early autophagosomes. Autophagosome initiation was controlled by MTORC1 sensing glutamine, leucine, and arginine levels together. In contrast, glucose starvation promoted AMPK activity, phosphorylation of ULK1 Ser555, and LC3-II accumulation, but with dynamics consistent with a block in autophagy flux. We studied the flux pathway and found that starvation of amino acid but not of glucose activated lysosomal acidification, which occurred independently of autophagy and ULK1. In addition to lack of activation, glucose starvation inhibited the ability of amino acid starvation to activate both autophagosome formation and the lysosome. Activation of AMPK and phosphorylation of ULK1 were determined to specifically inhibit autophagosome formation. AMPK activation also was sufficient to prevent lysosome acidification. These results indicate concerted but distinct AMPK-dependent mechanisms to suppress early and late phases of autophagy.


2012 ◽  
Vol 197 (5) ◽  
pp. 659-675 ◽  
Author(s):  
Andrea Longatti ◽  
Christopher A. Lamb ◽  
Minoo Razi ◽  
Shin-ichiro Yoshimura ◽  
Francis A. Barr ◽  
...  

Autophagy is a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. The exact molecular mechanism of autophagosome formation and the origin of the autophagosomal membrane remain unclear. We screened 38 human Tre-2/Bub2/Cdc16 domain–containing Rab guanosine triphosphatase–activating proteins (GAPs) and identified 11 negative regulators of starvation-induced autophagy. One of these putative RabGAPs, TBC1D14, colocalizes and interacts with the autophagy kinase ULK1. Overexpressed TBC1D14 tubulates ULK1-positive recycling endosomes (REs), impairing their function and inhibiting autophagosome formation. TBC1D14 binds activated Rab11 but is not a GAP for Rab11, and loss of Rab11 prevents TBC1D14-induced tubulation of REs. Furthermore, Rab11 is required for autophagosome formation. ULK1 and Atg9 are found on Rab11- and transferrin (Tfn) receptor (TfnR)–positive recycling endosomes. Amino acid starvation causes TBC1D14 to relocalize from REs to the Golgi complex, whereas TfnR and Tfn localize to forming autophagosomes, which are ULK1 and LC3 positive. Thus, TBC1D14- and Rab11-dependent vesicular transport from REs contributes to and regulates starvation-induced autophagy.


Science ◽  
2020 ◽  
Vol 367 (6474) ◽  
pp. 159.4-160
Author(s):  
Valda Vinson

2009 ◽  
Vol 422 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Oliver Schieweck ◽  
Markus Damme ◽  
Bernd Schröder ◽  
Andrej Hasilik ◽  
Bernhard Schmidt ◽  
...  

Until recently, a modest number of approx. 40 lysosomal membrane proteins had been identified and even fewer were characterized in their function. In a proteomic study, using lysosomal membranes from human placenta we identified several candidate lysosomal membrane proteins and proved the lysosomal localization of two of them. In the present study, we demonstrate the lysosomal localization of the mouse orthologue of the human C1orf85 protein, which has been termed kidney-predominant protein NCU-G1 (GenBank® accession number: AB027141). NCU-G1 encodes a 404 amino acid protein with a calculated molecular mass of 39 kDa. The bioinformatics analysis of its amino acid sequence suggests it is a type I transmembrane protein containing a single tyrosine-based consensus lysosomal sorting motif at position 400 within the 12-residue C-terminal tail. Its lysosomal localization was confirmed using immunofluorescence with a C-terminally His-tagged NCU-G1 and the lysosomal marker LAMP-1 (lysosome-associated membrane protein-1) as a reference, and by subcellular fractionation of mouse liver after a tyloxapol-induced density shift of the lysosomal fraction using an anti-NCU-G1 antiserum. In transiently transfected HT1080 and HeLa cells, the His-tagged NCU-G1 was detected in two molecular forms with apparent protein sizes of 70 and 80 kDa, and in mouse liver the endogenous wild-type NCU-G1 was detected as a 75 kDa protein. The remarkable difference between the apparent and the calculated molecular masses of NCU-G1 was shown, by digesting the protein with N-glycosidase F, to be due to an extensive glycosylation. The lysosomal localization was impaired by mutational replacement of an alanine residue for the tyrosine residue within the putative sorting motif.


1999 ◽  
Vol 19 (12) ◽  
pp. 8422-8432 ◽  
Author(s):  
Olivier Donzé ◽  
Didier Picard

ABSTRACT The protein kinase Gcn2 stimulates translation of the yeast transcription factor Gcn4 upon amino acid starvation. Using genetic and biochemical approaches, we show that Gcn2 is regulated by the molecular chaperone Hsp90 in budding yeast Saccharomyces cerevisiae. Specifically, we found that (i) several Hsp90 mutant strains exhibit constitutive expression of a GCN4-lacZ reporter plasmid; (ii) Gcn2 and Hsp90 form a complex in vitro as well as in vivo; (iii) the specific inhibitors of Hsp90, geldanamycin and macbecin I, enhance the association of Gcn2 with Hsp90 and inhibit its kinase activity in vitro; (iv) in vivo, macbecin I strongly reduces the levels of Gcn2; (v) in a strain expressing the temperature-sensitive Hsp90 mutant G170D, both the accumulation and activity of Gcn2 are abolished at the restrictive temperature; and (vi) the Hsp90 cochaperones Cdc37, Sti1, and Sba1 are required for the response to amino acid starvation. Taken together, these data identify Gcn2 as a novel target for Hsp90, which plays a crucial role for the maturation and regulation of Gcn2.


Sign in / Sign up

Export Citation Format

Share Document