scholarly journals POLYRIBOSOMES AND CISTERNAL ACCUMULATIONS IN ROOT CELLS OF RADISH

1965 ◽  
Vol 27 (2) ◽  
pp. 423-432 ◽  
Author(s):  
Howard T. Bonnett ◽  
Eldon H. Newcomb

The zone of root hair formation of seedling radish roots, Raphanus sativus L., was studied by phase-contrast and electron microscopy. Localized dilations of the endoplasmic reticulum, which contained a moderately dense proteinaceous material, were found to be a common component of the cytoplasm in cells of the epidermis and cortex. The surfaces of these dilations were covered with polyribosomes in discrete coils commonly composed of 15 to 17 ribosomes. The function of these structures and the fate of the material accumulated in them are unknown. Their similarity to structures described in some types of animal cells is discussed.

1975 ◽  
Vol 18 (1) ◽  
pp. 1-17
Author(s):  
A. Pleshkewych ◽  
L. Levine

A prominent cytoplasmic inclusion present in living mouse primary spermatocytes has been observed by both light and electron microscopy. It began to form at prometaphase and continued to increase in thickness and length as the cells developed. By metaphase it was a distinct sausage-shaped boundary that enclosed a portion of the cytoplasm between the spindle and the cell membrane. At the end of metaphase, the inclusion reached its maximum length. At telophase, it was divided between the daughter secondaries. The inclusion persisted as a circular contour in the interphase secondary spermatocyte. Electron microscopy of the same cultured cells that were previously observed with light microscopy revealed that the inclusion was a distinctive formation of membranes. It consisted of agranular cisternae and vesicles, and was therefore a membranous complex. Many of the smaller vesicles in the membranous complex resembled those found in the spindle. The cisternae in the membranous complex were identical to the cisternal endoplasmic reticulum of interphase primary spermatocytes. Nevertheless, the organization of vesicles and cisternae into the membranous complex was unique for the primaries in division stages, since such an organization was not present in their interphase stages.


1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


1957 ◽  
Vol 3 (1) ◽  
pp. 61-70 ◽  
Author(s):  
A. J. Hodge ◽  
E. M. Martin ◽  
R. K. Morton

1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.


1965 ◽  
Vol 20 (8) ◽  
pp. 795-801 ◽  
Author(s):  
Lothar Diers

The formation and maturation of the egg of the liverwort, Sphaerocarpus donnellii, was investigated by light, phase contrast and particularly by electron microscopy. The division of the central cell into the egg and the ventral canal cell, and the maturation of the egg, is completed within four days. All stages of this formation and maturation were examined under the electron microscope after fixation in KMnO4 or OsO4. — In the maturing egg there always occur the endoplasmic reticulum, well recognisable plastids with a poorly developed lamellar system, numerous mitochondria and dictyosomes, a rising number of lipid droplets, unknown small bodies limited by a unit membrane, and numerous ribosomes. During maturation the nucleus considerably enlarges and forms evaginations into the cytoplasm. Starch is increasingly deposited in the plastids. A degeneration of plastids has not been found.


1980 ◽  
Vol 28 (10) ◽  
pp. 1129-1132 ◽  
Author(s):  
F Marty

Structural interactions between intracellular membranes in root cells of Triticum sativum L. have been investigated with the 3 MeV electron microscope in Toulouse after selective labeling of the membranes with either zinc iodide-osmium tetroxide or phosphotungstate at low pH. Direct membrane continuities between endoplasmic reticulum, Golgi apparatus, and biogenetically derived compartments of the exoplasmic space are more extensive than commonly suggested from conventional electron microscopy. The results are discussed with reference to current concepts suggesting a membrane flow from the endoplasmic reticulum to the terminal components, plasmalemma, and vacuoles.


Blood ◽  
1960 ◽  
Vol 16 (3) ◽  
pp. 1253-1267 ◽  
Author(s):  
G. ADOLPH ACKERMAN ◽  
JOSEPH A. GRASSO ◽  
RALPH A. KNOUFF

Abstract A detailed study (phase contrast, bright field and electron microscopy) of the primitive leukemic cells from a patient with atypical myeloblastic leukemia has been presented. An unusual mucopolysaccharide-containing vacuole has been observed and characterized both morphologically and histochemically. In addition, this study has yielded considerable information concerning the structure and chemical composition of the fibrillar formations, fat droplets and the alterations in erythrocytes following their ingestion by the leukemic cells. Intramitochondrial structural alterations have been observed and characterized in many of the primitive myeloblasts. Changes in the mitochondria and endoplasmic reticulum may reflect impaired or altered metabolism in these abnormal leukemic cells.


2014 ◽  
Vol 67 (3-4) ◽  
pp. 207-216 ◽  
Author(s):  
Grażyna Grymaszewska ◽  
Władysław Golinowski

The structure of syncytia induced by <i>Heterodera schachtii</i> Schmidt in roots of susceptible <i>Raphanus sativus</i> L. cv. "Siletina" and resistant radish cv. "Pegletta" was investigated. In the radish cultivar "Siletina" the syncytia most often appeared in the elongation zone of lateral roots. They were initiated in the procambium and pericycle but also included the parenchyma cells of vascular cylinder. In the susceptible cultivar "Siletina" the cells forming the female's syncytia were subject to hypertrophy. Their cytoplasmic density increased. The cytoplasm contained numerous organella. The proliferation of the smooth endoplasmic reticulum took place. Branched cell wall ingrowths were formed next to the vessels. In the male's syncytia the cells were only slightly increased. Their protoplasts contained few organelles. The cell wall ingrowths were poorly developed. In the syncytia of the resistant cultivar "Pegletta" there was only a slight increase of the cell volume. A well developed system of rough endoplasmic reticulum was observed in the protoplast. Distended ER cisterns contained fine fibrillar material. Material of similar structure also appeared in numerous small vacuoles. In resistant plants only some, not numerous, syncytia spreading in procambium fully developed and functioned long enough for the parasite females to mature. At an advanced stage of infection a well developed system of a rough ER was observed also in those syncytia and numerous vacuoles appeared.


2014 ◽  
Vol 56 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Maxime Gotté ◽  
Rajgourab Ghosh ◽  
Sophie Bernard ◽  
Eric Nguema-Ona ◽  
Maïté Vicré-Gibouin ◽  
...  

The behaviour of the nuclear membrane during meiotic division in locust spermatocytes has been studied by electron microscopy. Preliminary observations were made on living cells from locusts, grasshoppers and beetles by phase-contrast microscopy and on snail and newt spermatocytes by electron microscopy. The mitochondria come into close association with the nuclear membrane during prophase and are often clustered round regions of degenerating nuclear membrane. The mitochondrial membranes sometimes appear to be fused with the nuclear membrane, and gaps in the latter are often found near mitochondria. Lamellar stacks are found in the cytoplasm during early prophase and closely resemble the nuclear membrane in the same cells ; they are generally annulate in spermatogonia and primary spermatocytes butsmooth-walled in secondary spermatocytes. There is evidence that the stacks arise by repeated folding of the nuclear membrane and become converted into endoplasmic reticulum. After division, the daughter cell chromosomes are at first devoid of a surrounding membrane. Elements of the endoplasmic reticulum accumulate between the mitochondria and gradually surround the chromosomes. These elements fuse to form a continuous double nuclear membrane. It is suggested that the nuclear membrane, endoplasmic reticulum and cell membrane are composed of the same material, which can be transformed into different structures according to the needs of the cell. The nuclear membrane is converted into endoplasmic reticulum during division and stored in the cytoplasm . The new nuclear membranes in the daughter cells are formed by the fusion of elements of the endoplasmic reticulum.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1845
Author(s):  
Camelia Ungureanu ◽  
Irina Fierascu ◽  
Radu Claudiu Fierascu ◽  
Teodora Costea ◽  
Sorin Marius Avramescu ◽  
...  

The aim of the current paper is the development of phytosynthesized silver nanoparticles mediated by Raphanus sativus L. extracts obtained through two extraction methods (temperature and microwave) and to test their potential application for controlling apple crops pathogens. The phytosynthesized materials were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. All the materials were evaluated in terms of antioxidant and in vitro antimicrobial activity (against bacteria, molds, and yeast: Escherichia coli ATCC 8738, Staphylococcus aureus ATTC 25923, Pseudomonas aeruginosa ATCC 9027, Salmonella typhimurium ATCC 14028, Candida albicans ATCC 10231, Venturia inaequalis, Podosphaera leucotricha, Fusarium oxysporum ATCC 48112, Penicillium hirsutum ATCC 52323, and Aspergillus niger ATCC 15475). Considering the results obtained in the in vitro assays, formulations based on nanoparticles phytosynthesized using Raphanus sativus L. waste extracts (RS1N) were evaluated as potential antifungal agents for horticultural crops protection, against Venturia inaequalis and Podosphaera leucotricha through in vivo assays. For the DPPH assay, the inhibition (%) varied between 37.06% (for RS1N at 0.8 mg/mL concentration) and 83.72% (for RS1N at 7.2 mg/mL concentration) compared to 19.97% (for RS2N at 0.8 mg/mL) and only 28.91% (for RS2N at 7.2 mg/mL). Similar results were obtained for RS3N (85.42% inhibition at 7.2 mg/mL) compared with RS4N (21.76% inhibition at 7.2 mg/mL). Regarding the ABTS assay, the highest scavenger activity values were recorded for samples RS1N (91.43% at 1.6 mg/mL) and RS3N (96.62% at 1.6 mg/mL).


Sign in / Sign up

Export Citation Format

Share Document