scholarly journals THE STRUCTURE OF SOME CYTOPLASMIC COMPONENTS OF PLANT CELLS IN RELATION TO THE BIOCHEMICAL PROPERTIES OF ISOLATED PARTICLES

1957 ◽  
Vol 3 (1) ◽  
pp. 61-70 ◽  
Author(s):  
A. J. Hodge ◽  
E. M. Martin ◽  
R. K. Morton

1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.

1959 ◽  
Vol 5 (3) ◽  
pp. 501-506 ◽  
Author(s):  
W. Gordon Whaley ◽  
Hilton H. Mollenhauer ◽  
Joyce E. Kephart

Maize root tips were fixed in potassium permanganate, embedded in epoxy resin, sectioned to show silver interference color, and studied with the electron microscope. All the cells were seen to contain an endoplasmic reticulum and apparently independent Golgi structures. The endoplasmic reticulum is demonstrated as a membrane-bounded, vesicular structure comparable in many aspects to that of several types of animal cells. With the treatment used here the membranes appear smooth surfaced. The endoplasmic reticulum is continuous with the nuclear envelope and, by contact at least, with structures passing through the cell wall. The nuclear envelope is characterized by discontinuities, as previously reported for animal cells. The reticula of adjacent cells seem to be in contact at or through the plasmodesmata. Because of these contacts the endoplasmic reticulum of a given cell appears to be part of an intercellular system. The Golgi structures appear as stacks of platelet-vesicles which apparently may, under certain conditions, produce small vesicles around their edges. Their form changes markedly with development of the cell.


1965 ◽  
Vol 27 (2) ◽  
pp. 423-432 ◽  
Author(s):  
Howard T. Bonnett ◽  
Eldon H. Newcomb

The zone of root hair formation of seedling radish roots, Raphanus sativus L., was studied by phase-contrast and electron microscopy. Localized dilations of the endoplasmic reticulum, which contained a moderately dense proteinaceous material, were found to be a common component of the cytoplasm in cells of the epidermis and cortex. The surfaces of these dilations were covered with polyribosomes in discrete coils commonly composed of 15 to 17 ribosomes. The function of these structures and the fate of the material accumulated in them are unknown. Their similarity to structures described in some types of animal cells is discussed.


Author(s):  
M. T. Du ◽  
G. L. Zhu ◽  
H. Z. Chen ◽  
R. Han

Abstract Plants adjust their shoot growth to acclimate to changing environmental factors, such as to enhanced Ultraviolet-B (UV-B) radiation. However, people have ignored that plant roots can also respond to UV-B light. Here, we find the morphology curled wheat roots under UV-B radiation, that we call, “bending roots.” The curly region is the transition zone of the root after observed at the cellular level. After exposed to enhanced UV-B radiation for 2 d (10.08 KJ/m2/d), cell size decreased and actin filaments gathered in wheat roots. We also find that H2O2 production increased and that content of the indole-3-acetic acid (IAA) increased remarkably. The pharmacological experiment revealed that actin filaments gathered and polymerized into bundles in the wheat root cells after irrigated H2O2 and IAA. These results indicated that actin filaments changed their distribution and formed the “bending root,” which was related to H2O2 production and increase in IAA. Overall, actin filaments in wheat root cells could be a subcellular target of UV-B radiation, and its disruption determines root morphology.


1957 ◽  
Vol 3 (3) ◽  
pp. 463-488 ◽  
Author(s):  
Ruth Sager ◽  
George E. Palade

The cytoplasmic organization of a normal green strain of the alga Chlamydomonas reinhardi has been investigated with the electron microscope using thin sections of OsO4 fixed material. The detailed organization of the chloroplast has been of special interest. The chloroplast, a cup-shaped organelle, surrounded by a double membrane, consists of: (1) discs about 1 micron in diameter, considered to represent the basic structural unit of the chloroplast, and each composed of a pair of membranes joined at their ends to form a flat closed vesicle; the discs are grouped into stacks resembling the grana of higher plants; (2) matrix material of low density in which the discs are embedded; (3) starch grains; (4) the pyrenoid, a non-lamellar region associated with starch synthesis, and containing tubules which connect with the lamellae; (5) the eyespot, a differentiated region containing two or three plates of hexagonally packed, carotenoid-containing granules, located between discs, and associated with phototaxis. In addition to the chloroplast, the cytoplasm contains various membranous and granular components, including mitochondria, endoplasmic reticulum, and dictyosomes, identified on the basis of morphological comparability with structures seen in animal cells. The nucleus, not investigated in detail in this study, contains a large, granular nucleolus and is surrounded by a nuclear envelope which is provided with pores and exhibits instances of continuity with the endoplasmic reticulum of the cytoplasm.


Author(s):  
J. R. Ruby

Parotid glands were obtained from five adult (four male and one female) armadillos (Dasypus novemcinctus) which were perfusion-fixed. The glands were located in a position similar to that of most mammals. They extended interiorly to the anterior portion of the submandibular gland.In the light microscope, it was noted that the acini were relatively small and stained strongly positive with the periodic acid-Schiff (PAS) and alcian blue techniques, confirming the earlier results of Shackleford (1). Based on these qualities and other structural criteria, these cells have been classified as seromucous (2). The duct system was well developed. There were numerous intercalated ducts and intralobular striated ducts. The striated duct cells contained large amounts of PAS-positive substance.Thin sections revealed that the acinar cells were pyramidal in shape and contained a basally placed, slightly flattened nucleus (Fig. 1). The rough endoplasmic reticulum was also at the base of the cell.


Author(s):  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic disease was first discovered in southern Alberta, Canada, in 1956. A hitherto unidentified disease-causing agent, transmitted by the eriophyid mite, caused chlorosis, stunting and finally severe necrosis resulting in the death of the affected plants. Double membrane-bound bodies (DMBB), 0.1-0.2 μm in diameter were found to be associated with the disease.Young tissues of leaf and root from 4-wk-old infected wheat plants were fixed, dehydrated, and embedded in Spurr’s resin. Serial sections were collected on slot copper grids and stained. The thin sections were then examined with a Hitachi H-7000 TEM at 75 kV. The membrane structure of the DMBBs was studied by numbering them individually and tracing along the sections to see any physical connection with endoplasmic reticulum (ER) membranes. For high resolution scanning EM, a modification of Tanaka’s method was used. The specimens were examined with a Hitachi Model S-570 SEM in its high resolution mode at 20 kV.


Author(s):  
Patricia G. Calarco ◽  
Margaret C. Siebert

Visualization of preimplantation mammalian embryos by electron microscopy is difficult due to the large size of the ircells, their relative lack of internal structure, and their highly hydrated cytoplasm. For example, the fertilized egg of the mouse is a single cell of approximately 75μ in diameter with little organized cytoskelet on and apaucity ofor ganelles such as endoplasmic reticulum (ER) and Golgi material. Thus, techniques that work well on tissues or cell lines are often not adaptable to embryos at either the LM or EM level.Over several years we have perfected techniques for visualization of mammalian embryos by LM and TEM, SEM and for the pre-embedding localization of antigens. Post-embedding antigenlocalization in thin sections of mouse oocytes and embryos has presented a more difficult challenge and has been explored in LR White, LR Gold, soft EPON (after etching of sections), and Lowicryl K4M. To date, antigen localization has only been achieved in Lowicryl-embedded material, although even with polymerization at-40°C, the small ER vesicles characteristic of embryos are unrecognizable.


2014 ◽  
Vol 1 (3) ◽  
pp. 57-61
Author(s):  
E. Kopylov

Aim. To study the specifi cities of complex inoculation of spring wheat roots with the bacteria of Azospirillum genus and Chaetomium cochliodes Palliser 3250, and the isolation of bacteria of Azospirillum genus, capable of fi xing atmospheric nitrogen, from the rhizospheric soil, washed-off roots and histoshere. Materials and meth- ods. The phenotypic features of the selected bacteria were identifi ed according to Bergi key. The molecular the polymerase chain reaction and genetic analysis was used for the identifi cation the bacteria. Results. It has been demonstrated that during the introduction into the root system of spring wheat the strain of A. brasilensе 102 actively colonizes rhizospheric soil, root surface and is capable of penetrating into the inner plant tissues. Conclusions. The soil ascomucete of C. cochliodes 3250 promotes better settling down of Azospirillum cells in spring wheat root zone, especially in plant histosphere which induces the increase in the content of chlorophyll a and b in the leaves and yield of the crop.


2006 ◽  
Vol 20 (12) ◽  
pp. 3146-3164 ◽  
Author(s):  
Tom Krietsch ◽  
Maria Sofia Fernandes ◽  
Jukka Kero ◽  
Ralf Lösel ◽  
Maria Heyens ◽  
...  

Abstract The steroid hormone progesterone exerts pleiotrophic functions in many cell types. Although progesterone controls transcriptional activation through binding to its nuclear receptors, it also initiates rapid nongenomic signaling events. Recently, three putative membrane progestin receptors (mPRα, β, and γ) with structural similarity to G protein-coupled receptors have been identified. These mPR isoforms are expressed in a tissue-specific manner and belong to the larger, highly conserved family of progestin and adiponectin receptors found in plants, eubacteria, and eukaryotes. The fish mPRα has been reported to mediate progesterone-dependent MAPK activation and inhibition of cAMP production through coupling to an inhibitory G protein. To functionally characterize the human homologs, we established human embryonic kidney 293 and MDA-MB-231 cell lines that stably express human mPRα, β, or γ. For comparison, we also established cell lines expressing the mPRα cloned from the spotted seatrout (Cynoscion nebulosus) and Japanese pufferfish (Takifugu rubripes). Surprisingly, we found no evidence that human or fish mPRs regulate cAMP production or MAPK (ERK1/2 or p38) activation upon progesterone stimulation. Furthermore, the mPRs did not couple to a highly promiscuous G protein subunit, Gαq5i, in transfection studies or provoke Ca2+ mobilization in response to progesterone. Finally, we demonstrate that transfected mPRs, as well as endogenous human mPRα, localize to the endoplasmic reticulum, and that their expression does not lead to increased progestin binding either in membrane preparations or in intact cells. Our results therefore do not support the concept that mPRs are plasma membrane receptors involved in transducing nongenomic progesterone actions.


2001 ◽  
Vol 355 (1) ◽  
pp. 231-235 ◽  
Author(s):  
Brigitte SIBILLE ◽  
Céline FILIPPI ◽  
Marie-Astrid PIQUET ◽  
Pascale LECLERCQ ◽  
Eric FONTAINE ◽  
...  

In isolated mitochondria the consequences of oxidative phosphorylation uncoupling are well defined, whereas in intact cells various effects have been described. Uncoupling liver cells with 2,4-dinitrophenol (DNP) in the presence of dihydroxyacetone (DHA) and ethanol results in a marked decrease in mitochondrial transmembrane electrical potential (∆ψ), ATP/ADP ratios and gluconeogenesis (as an ATP-utilizing process), whereas the increased oxidation rate is limited and transient. Conversely, when DHA is associated with octanoate or proline, DNP addition results in a very large and sustained increase in oxidation rate, whereas the decreases in ∆ψ, ATP/ADP ratios and gluconeogenesis are significantly less when compared with DHA and ethanol. Hence significant energy wastage (high oxidation rate) by uncoupling is achieved only with substrates that are directly oxidized in the mitochondrial matrix. Conversely in the presence of substrates that are first oxidized in the cytosol, uncoupling results in a profound decrease in mitochondrial ∆ψ and ATP synthesis, whereas energy wastage is very limited.


Sign in / Sign up

Export Citation Format

Share Document