scholarly journals BIOGENESIS OF ENDOPLASMIC RETICULUM MEMBRANES

1966 ◽  
Vol 30 (1) ◽  
pp. 97-117 ◽  
Author(s):  
Gustav Dallner ◽  
Philip Siekevitz ◽  
George E. Palade

The constitutive enzymes of microsomal membranes were investigated during a period of rapid ER development (from 3 days before to 8 days after birth) in rat hepatocytes. The activities studied (electron transport enzymes and phosphatases) appear at different times and increase at different rates. The increase in the enzyme activities tested was inhibited by Actinomycin D and puromycin. G-6-Pase and NADPH-cytochrome c reductase activities appeared first in the rough microsomes, and subsequently in smooth microsomes, eventually reaching a uniform concentration as in adult liver. The evidence suggests that the enzymes are synthesized in the rough part, then transferred to the smooth part, of the ER. Changes in the fat supplement of the maternal diet brought about changes in the fatty acid composition of microsomal phospholipids but did not influence the enzymic pattern of the suckling. Microsomes from 8-day-old and adult rats lose 95% of PLP and 80% of NADH-cytochrome c reductase activity after acetone-H2O (10:1) extraction. However, one-half the original activity could be regained by adding back phospholipid micelles prepared from purified phospholipid, or from lipid extracts of heart mitochondria, or of liver microsomes of 8-day or adult rats, thus demonstrating an activation of the enzyme by nonspecific phospholipid. The results suggest that during development the enzymic pattern is not influenced by the fatty acid or phospholipid composition of ER membranes.

1956 ◽  
Vol 2 (2) ◽  
pp. 171-200 ◽  
Author(s):  
G. E. Palade ◽  
P. Siekevitz

Rat liver, liver homogenates, and microsome fractions separated therefrom were examined systematically in the electron microscope in sections of OsO4-fixed, methacrylate-embedded tissue and pellets. It was found that most microsomes are morphologically identical with the rough surfaced elements of the endoplasmic reticula of hepatic cells. They appear as isolated, membrane-bound vesicles, tubules, and cisternae which contain an apparently homogeneous material of noticeable density, and bear small, dense particles (100 to 150 A) attached to their outer aspect. In solutions of various osmolar concentrations they behave like osmometers. The findings suggest that they derive from the endoplasmic reticulum by a generalized pinching-off process rather than by mechanical fragmentation. The microsome fractions contain in addition relatively few vesicles free of attached particles, probably derived from the smooth surfaced parts of the endoplasmic reticula. Dense, peribiliary bodies represent a minor component of the same fractions. The microsomes derived from 1 gm. wet weight liver pulp contained (averages of 10 experiments) 3.09 mg. protein N, 3.46 mg. RNA (RNA/protein N = 1.12), and 487 µg. phospholipide P. They displayed DPNH-cytochrome c reductase activity and contained an alcohol-soluble hemochromogen. The microsome preparations proved resistant to washing and "aging." Treatment with versene and incubation with ribonuclease (30 minutes at 37°C.) resulted in appreciable losses of RNA and in partial or total disappearance of attached particles. Treatment with deoxycholate (0.3 to 0.5 per cent, pH = 7.5) induced a partial clarification of the microsome suspensions which, upon centrifugation, yielded a small pellet of conglomerated small, dense particles (100 to 150 A) with only occasionally interspersed vesicles. The pellet contained ∼80 to 90 per cent of the RNA and ∼20 per cent of the protein N of the original microsomes. The supernatant accounted satisfactorily for the materials lost during deoxycholate treatment. The findings suggest that the microsomal RNA is associated with the small particles whereas most of the protein and nearly all of the phospholipide, hemochromogen, and DPNH-cytochrome c reductase activity are associated with the membrane or content of the microsomes.


1990 ◽  
Vol 49 (3) ◽  
pp. 206-214 ◽  
Author(s):  
GEORGE S. ZUBENKO ◽  
JOHN MOOSSY ◽  
DIANA CLAASSEN ◽  
A. Julio Martinez ◽  
GUTTI R. RAO

1989 ◽  
Vol 259 (3) ◽  
pp. 847-853 ◽  
Author(s):  
I Benveniste ◽  
A Lesot ◽  
M P Hasenfratz ◽  
F Durst

Polyclonal antibodies were prepared against NADPH-cytochrome P-450 reductase purified from Jerusalem artichoke. These antibodies inhibited efficiently the NADPH-cytochrome c reductase activity of the purified enzyme, as well as of Jerusalem artichoke microsomes. Likewise, microsomal NADPH-dependent cytochrome P-450 mono-oxygenases (cinnamate and laurate hydroxylases) were efficiently inhibited. The antibodies were only slightly inhibitory toward microsomal NADH-cytochrome c reductase activity, but lowered NADH-dependent cytochrome P-450 mono-oxygenase activities. The Jerusalem artichoke NADPH-cytochrome P-450 reductase is characterized by its high Mr (82,000) as compared with the enzyme from animals (76,000-78,000). Western blot analysis revealed cross-reactivity of the Jerusalem artichoke reductase antibodies with microsomes from plants belonging to different families (monocotyledons and dicotyledons). All of the proteins recognized by the antibodies had an Mr of approx. 82,000. No cross-reaction was observed with microsomes from rat liver or Locusta migratoria midgut. The cross-reactivity generally paralleled well the inhibition of reductase activity: the enzyme from most higher plants tested was inhibited by the antibodies; whereas Gingko biloba, Euglena gracilis, yeast, rat liver and insect midgut activities were insensitive to the antibodies. These results point to structural differences, particularly at the active site, between the reductases from higher plants and the enzymes from phylogenetically distant plants and from animals.


1981 ◽  
Vol 50 (1) ◽  
pp. 181-198
Author(s):  
K. Aoi ◽  
Y. Fujii-Kuriyama ◽  
Y. Tashiro

NADPH-cytochrome c reductase was purified from rat liver microsomes and the monospecific antibodies to the reductase were prepared from the antiserum by affinity chromatography using immunoadsorbent gel. Ferritin was coupled to the specific antibodies and the approximately equimolar conjugates were isolated by gel filtration. By direct ferritin-immunoelectron microscopy, using these conjugates, it was revealed that the ferritin particles are localized exclusively on the microsomal vesicles and the outer nuclear envelope. In contrast, binding of ferritin particles to Golgi membranes, outer mitochondrial membranes and plasma membranes was slight and at control level. On each microsomal vesicle, the ferritin particles were distributed heterogeneously, sometimes forming clusters. An assay of the binding of equimolar conjugates with microsomes showed that microsomes bind approximately 1 mol of antibody per mol of reductase. From these data the maximum number of ferritin particles that can bind with microsomes was calculated. This number is in agreement with the average number of ferritin particles bound per microsome, as determined experimentally by observing a number of cross-sectional profiles of microsomal vesicles previously incubated with the conjugates at saturation level. This showed that the distribution of the reductase could be analysed semi-quantitatively by the present ferritin-immunoelectron-microscopical analyses. It was also shown that smooth microsomes can bind more conjugates than rough microsomes. The average number of ferritin particles on each microsomal vesicle increased in proportion to the increase in the amount of reductase in the microsomes after treatment with phenobarbital. Finally, the non-random distribution of ferritin particles on microsomal vesicles was confirmed by statistical analysis of electron micrographs of a number of the labelled microsomes.


1961 ◽  
Vol 39 (5) ◽  
pp. 1131-1148 ◽  
Author(s):  
G. A. White ◽  
G. A. Ledingham

Electron transport to oxygen in a particulate fraction from uredospores of Puccinia graminis var. tritici occurs through a series of carriers similar to those of other fungi and higher plants.Experiments with various enzyme inhibitors and measurements of the oxygen affinity of respiration have shown that cytochrome oxidase mediates the final step in the sequence of electron transfer. The enzyme was localized in a fraction sedimenting at 20,000 g and was typically inhibited by cyanide, azide, and CO-dark, the latter inhibition being light-reversible. Other enzymes present were succinic-cytochrome c reductase, DPNH- and TPNH-cytochrome c reductase, dye reductase, malic dehydrogenase, isocitric dehydrogenase, and glycerol-1-phosphate dehydrogenase. Particulates failed to oxidize DPNH unless an electron acceptor was added. An increase in the activity of several of the respiratory enzymes was noted upon spore germination.Succinic-cytochrome c reductase was only partially sensitive to Antimycin A, HOQNO, and the naphthoquinone, SN 5949. These compounds markedly inhibited a labile portion of the DPNH-cytochrome c reductase activity but had little effect on the stable activity remaining in aged particles. Menadione, but not vitamin K1, stimulated electron transfer. Antimycin A and SN 5949 virtually blocked spore respiration suggesting a "Slater-type" factor in the intact pathway of oxidation.


Sign in / Sign up

Export Citation Format

Share Document