scholarly journals MEMBRANE FUSION IN A MODEL SYSTEM

1973 ◽  
Vol 56 (1) ◽  
pp. 153-176 ◽  
Author(s):  
Birgit Satir ◽  
Caroline Schooley ◽  
Peter Satir

The freeze-fracture, freeze-etch technique can be employed to reveal new details of the process of fusion of two unit membranes For this study, mucocyst discharge in Tetrahymena pyriformis provides a model system with certain general implications The undischarged mature mucocyst is a saclike, membrane-bound, secretory vesicle containing crystalline material The organelle tip finds its way toward a special site, a rosette of 150 Å diameter particles within the plasma membrane. To match this site, the mucocyst membrane forms an annulus of 110 Å diameter particles, above whose inner edge the rosette particles sit. Discharge of some mucocysts is triggered by fixation. As discharge proceeds, the organelle becomes spherical and its content changes from crystalline to amorphous. The cytoplasm between the two matching membrane sites is squeezed away and the membranes fuse Steps in membrane reorganization can be reconstructed from changes in rosette appearance in the fracture faces. First, a depression in the rosette—the fusion pocket—forms. The rosette particles spread at the lip as the pocket deepens and enlarges from 60 to 200 nm. The annulus particles then become visible at the lip, indicating completed fusion of the A fracture faces of mucocyst and plasma membranes The remaining B faces of the two membranes have opposite polarities When the content of the mucocyst is released, the edges of these faces join so that the unit membrane runs uninterruptedly around the lip and into the pocket.

1985 ◽  
Vol 100 (2) ◽  
pp. 528-534 ◽  
Author(s):  
A P Aguas ◽  
P Pinto da Silva

The acrosome is a large secretory vesicle of the sperm head that carries enzymes responsible for the digestion of the oocyte's investments. The event leads to sperm penetration and allows fertilization to occur. Release of the acrosomal enzymes is mediated by the interaction between sperm acrosomal and plasma membranes (acrosome reaction). Biochemical characterization of the acrosomal membrane has been restrained by a lack of methods to isolate uncontaminated fractions of the membrane. Here, we use new methods to expose the membrane to in situ cytochemical labeling by lectin-gold complexes. We study the topology and relative density of glycoconjugates both across and along the plane of the acrosomal membrane of boar sperm. Detachment of the plasma membrane from glutaraldehyde-fixed cells exposed the cytoplasmic surface of the acrosome to the lectin markers; freeze-fractured halves of the acrosomal membrane were marked by "fracture-label" (Aguas, A. P., and P. Pinto da Silva, 1983, J. Cell Biol. 97:1356-1364). We show that the cytoplasmic surface of the intact acrosome is devoid of binding sites for both concanavalin A (Con A) and wheat germ agglutinin (WGA). By contrast, it contains a high density of neuraminidase-resistant anionic sites detected by cationic ferritin. On freeze-fractured sperm, the receptors for Con A partitioned with the exoplasmic membrane half of the acrosomal membrane. The Con A-binding glycoconjugates were accumulated on the equatorial segment of the membrane. A low density of WGA receptors, as well as of intramembrane particles, was found on the freeze-fracture halves of the acrosomal membrane. The plasma membrane displayed, in the same preparations, a high density of receptors for both Con A and WGA. We conclude that the acrosome is limited by a membrane poor in glycoconjugates, which are exclusively exposed on the exoplasmic side of the bilayer. Regionalization of Con A receptors on the acrosome shows that sperm intracellular membranes, like the sperm surface, express domain distribution of glycocomponents.


1978 ◽  
Vol 33 (1) ◽  
pp. 301-316
Author(s):  
J.G. Swift ◽  
T.M. Mukherjee

Changes in the structural organization of membranes of mucous bodies and the plasma membrane that occur during mucus production in goblet cells of rat rectum have been studied by thin-section and freeze-fracture techniques. Immature mucous bodies are bounded by a trilaminar membrane and fracture faces of the membrane have randomly distributed intramembrane particles. During maturation, mucous bodies become packed tightly together and changes in the structure of their membranes include (1) fusion of apposing membranes of adjacent bodies to form a pentalaminar structure, (2) a reduction in the density of particles on membrane fracture faces, and (3) exclusion of particles from regions of membrane apposition. Some trilaminar membranes of mucous bodies fuse with the lumenal plasma membrane to form a pentalaminar structure. Sites of apposition between mucous body membranes and the lumenal plasma membrane are seen as particle-cleared bulges on fracture faces of the plasma membrane. Our results indicate that membrane reorganization associated with mucous production in goblet cells includes a reduction and redistribution of some membrane proteins and that membrane fusion occurs between portions of membranes from which proteins have been displaced.


1985 ◽  
Vol 101 (5) ◽  
pp. 1757-1762 ◽  
Author(s):  
N Morel ◽  
J Marsal ◽  
R Manaranche ◽  
S Lazereg ◽  
J C Mazie ◽  
...  

The presynaptic plasma membrane (PSPM) of cholinergic nerve terminals was purified from Torpedo electric organ using a large-scale procedure. Up to 500 g of frozen electric organ were fractioned in a single run, leading to the isolation of greater than 100 mg of PSPM proteins. The purity of the fraction is similar to that of the synaptosomal plasma membrane obtained after subfractionation of Torpedo synaptosomes as judged by its membrane-bound acetylcholinesterase activity, the number of Glycera convoluta neurotoxin binding sites, and the binding of two monoclonal antibodies directed against PSPM. The specificity of these antibodies for the PSPM is demonstrated by immunofluorescence microscopy.


Blood ◽  
1982 ◽  
Vol 60 (3) ◽  
pp. 583-594 ◽  
Author(s):  
N Dainiak ◽  
CM Cohen

Abstract In order to examine the contribution of cell surface materials to erythroid burst-promoting activity (BPA), we separated media conditioned by a variety of human cell types into pellets and supernatants by centrifugation. When added to serum-restricted cultures of nonadherent human marrow cells, pellets contained about half of the total stimulatory activity. Freeze-fracture electron microscopy of the pellets revealed the presence of unilamellar membrane vesicles ranging from 0.10 to 0.40 microM in diameter. The amount of BPA in culture increased with added vesicle concentration in a saturable fashion. Preparation of leukocyte conditioned medium (LCM) from 125I-wheat germ agglutinin labeled cells and studies comparing the glycoprotein composition of vesicles with that of leukocyte plasma membranes suggest that LCM-derived vesicles are of plasma membrane origin. Moreover, partially purified leukocyte plasma membrane preparations also contained BPA. While disruption of vesicles by freezing/thawing and hypotonic lysis did not alter BPA, heat, trypsin, or pronase treatment removed greater than 65% of BPA, implying that vesicle surface rather than intravesicular molecules express BPA. Results of BPA assays performed in two-layer clots indicated that proximity to target cells is required for vesicle BPA expression. We conclude that membrane vesicles spontaneously shed from cell surfaces may be important regulators of erythroid burst proliferation in vitro.


1989 ◽  
Vol 262 (1) ◽  
pp. 33-40 ◽  
Author(s):  
U Stochaj ◽  
K Flocke ◽  
W Mathes ◽  
H G Mannherz

We have analysed the membrane anchorage of plasma-membrane 5′-nucleotidase, an ectoenzyme which can mediate binding to components of the extracellular matrix. We demonstrated that the purified enzyme obtained from chicken gizzard and a human pancreatic adenocarcinoma cell line were both completely transformed into a hydrophilic form by treatment with phospholipases C and D, cleaving glycosylphosphatidylinositol (GPI). These data indicate the presence of a glycolipid linker employed for membrane anchoring of the 5′-nucleotidase obtained from both sources. Incubation of plasma membranes under identical conditions revealed that about half of the AMPase activity was resistant to GPI-hydrolysing phospholipases. Investigation of the enzymic properties of purified chicken gizzard 5′-nucleotidase revealed only minor changes after removal of the phosphatidylinositol linker. However, cleavage of the membrane anchor resulted in an increased sensitivity towards inhibition by concanavalin A. After tissue fractionation, chicken gizzard 5′-nucleotidase could be obtained as either a membrane-bound or a soluble protein; the latter is suspected to be released from the plasma membrane by endogenous phospholipases. Higher-molecular-mass proteins immuno-cross-reactive with the purified chicken gizzard 5′-nucleotidase were detected as both soluble and membrane-bound forms.


1989 ◽  
Vol 109 (4) ◽  
pp. 1519-1528 ◽  
Author(s):  
H Miyata ◽  
B Bowers ◽  
E D Korn

Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F-actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI-extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP-sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin-binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.


1987 ◽  
Vol 252 (4) ◽  
pp. G535-G542 ◽  
Author(s):  
N. Viguerie ◽  
J. P. Esteve ◽  
C. Susini ◽  
N. Vaysse ◽  
A. Ribet

We have previously demonstrated the presence of specific binding sites for somatostatin on plasma membranes from pancreatic acinar cells. In the present study we attempted to characterize the fate of receptor-bound 125I-[Tyr11]somatostatin. Internalization of somatostatin was rapid (reaching a plateau at 20% of the cell-associated specific radioactivity) and temperature dependent. To follow the processing of bound somatostatin, acini were incubated with 125I-[Tyr11]somatostatin at 5 degrees C during 16 h then, after washing, incubated at 37 degrees C for 90 min in fresh medium. Surface-bound somatostatin decreased rapidly, whereas radioactivity increased in the cell interior and the incubation medium. Intracellular and membrane-bound radioactivity was mainly intact 125I-[Tyr11]somatostatin. Degradation occurred at the plasma membrane level and led to iodotyrosine production. After 15 min of incubation, 15% of the initially surface-bound 125I-[Tyr11]somatostatin was compartmentalized within the cell, mainly in the microsomal fraction. After 30 min, a significant increase in radioactivity appeared in the nuclear fraction. These results indicate that the major part of somatostatin cellular degradation takes place at the plasma membrane level. Within the cell, somatostatin is routed to the nucleus via particular fractions sedimenting with microsomal vesicles.


1994 ◽  
Vol 299 (2) ◽  
pp. 473-479 ◽  
Author(s):  
H Sengeløv ◽  
F Boulay ◽  
L Kjeldsen ◽  
N Borregaard

The subcellular localization of N-formylmethionyl-leucyl-phenylalanine (fMLP) receptors in human neutrophils was investigated. The fMLP receptor was detected with a high-affinity, photoactivatable, radioiodinated derivative of N-formyl-methionyl-leucyl-phenylalanyl-lysine (fMLFK). Neutrophils were disrupted by nitrogen cavitation and fractionated on Percoll density gradients. fMLP receptors were located in the beta-band containing gelatinase and specific granules, and in the gamma-band containing plasma membrane and secretory vesicles. Plasma membranes and secretory vesicles were separated by high-voltage free-flow electrophoresis, and secretory vesicles were demonstrated to be highly enriched in fMLP receptors. The receptors found in secretory vesicles translocated fully to the plasma membrane upon stimulation with inflammatory mediators. The receptor translocation from the beta-band indicated that the receptor present there was mainly located in gelatinase granules. A 25 kDa fMLP-binding protein was found in the beta-band. Immunoprecipitation revealed that this protein was identical with NGAL (neutrophil gelatinase-associated lipocalin), a novel protein found in specific granules. In summary, we demonstrate that the compartment in human neutrophils that is mobilized most easily and fastest, the secretory vesicle, is a major reservoir of fMLP receptors. This explains the prompt and extensive upregulation of fMLP receptors on the neutrophil surface in response to inflammatory stimuli.


1993 ◽  
Vol 41 (5) ◽  
pp. 649-656 ◽  
Author(s):  
F W Kan

Previous freeze-fracture experiments using either glutaraldehyde-fixed and cryoprotected specimens or unfixed rapid-frozen samples led to the proposal that cylindrical strands of the tight junction (TJ) observed in freeze-fracture preparations are inverted cylindrical micelles made up of membrane lipids and, possibly, membrane proteins. However, no one has yet been able to directly label the structural fibrils of the TJ. To test the hypothesis that TJ strands observed on freeze-fracture preparations are composed at least partially of lipids, we have combined the phospholipase A2-gold and the fracture-label techniques for localization of phospholipids. Phospholipase A2, purified from bee venom, was adsorbed on gold particles and used for specific labeling of its substrate. Phospholipase A2-colloidal gold (PLA2-CG) complex was applied to freeze-fractured preparations of rat exocrine pancreatic cells and testicular Sertoli cells, both of which are known to have extensive TJ complexes on their plasma membranes. Fracture-label replicas of exocrine pancreatic cells revealed specific association of gold particles with TJ fibrils on the protoplasmic fracture-face of the plasma membrane. The majority of these gold particles were observed either directly on the top of the TJ fibrils or adjacent to these cylindrical structures. A high density of PLA2-CG labeling was also observed over the complementary exoplasmic fracture-face of the TJ complex. This intimate association of PLA2-CG labeling with the TJ is particularly evident in the Sertoli cell plasma membrane, where rows of gold particles were observed to be superimposed on parallel arrays of cylindrical strands of the TJ complex. The present findings provide direct cytochemical evidence to support the hypothesis that cylindrical TJ strands observed in freeze-fracture preparations contain phospholipids.


1981 ◽  
Vol 88 (2) ◽  
pp. 301-311 ◽  
Author(s):  
M Lefort-Tran ◽  
K Aufderheide ◽  
M Pouphile ◽  
M Rossignol ◽  
J Beisson

The trichocysts of Paramecium tetraurelia constitute a favorable system for studying secretory process because of the numerous available mutations that block, at various stages, the development of these secretory vesicles, their migration towards and interaction with the cell surface, and their exocytosis. Previous studies of several mutants provided information (a) on the assembly and function of the intramembranous particles arrays in the plasma membrane at trichocyst attachment sites, (b) on the autonomous motility of trichocysts, required for attachment to the cortex, and (c) on a diffusible cytoplasmic factor whose interaction with both trichocyst and plasma membrane is required for exocytosis to take place. We describe here the properties of four more mutants deficient in exocytosis ability, nd6, nd7, tam38, and tam6, which were analyzed by freeze-fracture, microinjection of trichocysts, and assay for repair of the mutational defect through cell-cell interaction during conjugation with wild-type cells. As well as providing confirmation of previous conclusions, our observations show that the mutations nd6 and tam6 (which display striking abnormalities in their plasma membrane particle arrays and are reparable through cell-cell contact but not by microinjection of cytoplasm) affect two distinct properties of the plasma membrane, whereas the other two mutations affect different properties of the trichocysts. Altogether, the mutants so far analyzed now provide a rather comprehensive view of the steps and functions involved in secretory processes in Paramecium and demonstrate that two steps of these processes, trichocyst attachment to the plasma membrane and exocytosis, depend upon specific properties of both the secretory vesicle and the plasma membrane.


Sign in / Sign up

Export Citation Format

Share Document