scholarly journals STEREOLOGICAL ANALYSIS OF MAMMALIAN SKELETAL MUSCLE

1974 ◽  
Vol 60 (3) ◽  
pp. 732-754 ◽  
Author(s):  
Brenda R. Eisenberg ◽  
Aileen M. Kuda ◽  
James B. Peter

A quantitative analysis of the volumes, surface areas, and dimensions of the ultrastructural components in the soleus muscle fibers of the guinea pig was made by using point counting methods of stereology. Muscle fibers have structural orientation (anisotropy) and have spatial gradients of the structures within the fiber; therefore the standard stereological methods were modified where necessary. The entire analysis was repeated at two section orientations to test the modifications and identical results obtained from both. The volume of lipid droplets was 0.20 ± 0.06% (mean ± standard error, n = 5 animals) and the nuclei volume was 0.86 ± 0.20% of the fiber volume. The total mitochondrial volume was 4.85 ± 0.66% of the fiber volume with about one-third being found in an annulus within 1 µm of the sarcolemma. The mitochondrial volume in the remaining core of the fiber was 3.6 ± 0.4%. The T system has a volume of 0.14 ± 0.01% and a surface area of 0.064 ± 0.005 µm2/µm3 of the fiber volume. The surface area of the sarcolemma is 0.116 ± 0.013 µm2/µm3 which is twice the T system surface area. The volume of the entire sarcoplasmic reticulum is 3.52 ± 0.33% and the surface area is 0.97 ± 0.09 µm2/µm3. The sarcoplasmic reticulum is composed of the terminal cisternae whose volume is 1.04 ± 0.19% and surface area is 0.24 ± 0.05 µm2/µm3. The tubules of the sarcoplasmic reticulum in the I band and A band have volumes of 1.97 ± 0.24% and 0.51 ± 0.08%, and the surface areas of the I and A band reticulum are 0.56 ± 0.07 µm2/µm3 and 0.16 ± 0.04 µm2/µm3, respectively. The Z line width, myofibril and fiber diameters were measured.

1972 ◽  
Vol 55 (1) ◽  
pp. 42-57 ◽  
Author(s):  
Asish C. Nag

Electron microscopy, together with quantitation using a tracing device linked to a digital computer, reveals that the red and white muscle fibers of Salmo gairdneri differ in diameter, organization of myofibrils, dimensions of myofilaments, volumes and surface areas of T system and sarcoplasmic reticulum, morphology of mitochondria, and content of mitochondria, lipid, and glycogen. Biochemical studies show that the ATPase activity of white fibers is three times that of the red fibers. Actomyosin content of red fibers is higher than that of the white fibers. The functional significance of these differences between two fiber types is discussed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alyssa D. Brown ◽  
Leah A. Davis ◽  
Matthew J. Fogarty ◽  
Gary C. Sieck

Sarcopenia is characterized by muscle fiber atrophy and weakness, which may be associated with mitochondrial fragmentation and dysfunction. Mitochondrial remodeling and biogenesis in muscle fibers occurs in response to exercise and increased muscle activity. However, the adaptability mitochondria may decrease with age. The diaphragm muscle (DIAm) sustains breathing, via recruitment of fatigue-resistant type I and IIa fibers. More fatigable, type IIx/IIb DIAm fibers are infrequently recruited during airway protective and expulsive behaviors. DIAm sarcopenia is restricted to the atrophy of type IIx/IIb fibers, which impairs higher force airway protective and expulsive behaviors. The aerobic capacity to generate ATP within muscle fibers depends on the volume and intrinsic respiratory capacity of mitochondria. In the present study, mitochondria in type-identified DIAm fibers were labeled using MitoTracker Green and imaged in 3-D using confocal microscopy. Mitochondrial volume density was higher in type I and IIa DIAm fibers compared with type IIx/IIb fibers. Mitochondrial volume density did not change with age in type I and IIa fibers but was reduced in type IIx/IIb fibers in 24-month rats. Furthermore, mitochondria were more fragmented in type IIx/IIb compared with type I and IIa fibers, and worsened in 24-month rats. The maximum respiratory capacity of mitochondria in DIAm fibers was determined using a quantitative histochemical technique to measure the maximum velocity of the succinate dehydrogenase reaction (SDHmax). SDHmax per fiber volume was higher in type I and IIa DIAm fibers and did not change with age. In contrast, SDHmax per fiber volume decreased with age in type IIx/IIb DIAm fibers. There were two distinct clusters for SDHmax per fiber volume and mitochondrial volume density, one comprising type I and IIa fibers and the second comprising type IIx/IIb fibers. The separation of these clusters increased with aging. There was also a clear relation between SDHmax per mitochondrial volume and the extent of mitochondrial fragmentation. The results show that DIAm sarcopenia is restricted to type IIx/IIb DIAm fibers and related to reduced mitochondrial volume, mitochondrial fragmentation and reduced SDHmax per fiber volume.


1975 ◽  
Vol 66 (1) ◽  
pp. 31-45 ◽  
Author(s):  
B A Mobley ◽  
B R Eisenberg

Stereological techniques of point and intersection counting were used to measure morphological parameters from light and electron micrographs of frog skeletal muscle. Results for sartorius muscle are as follows: myofibrils comprise 83% of fiber volume; their surface to volume ratio is 3.8 mum-1. Mitochondria comprise 1.6% of fiber volume. Transverse tubules comprise 0.32% of fiber volume, and their surface area per volume of fiber is 0.22 mum-1. Terminal cisternae of the sarcoplasmic reticulum comprise 4.1% of fiber volume; their surface area per volume of fiber is 0.54 mum-1. Longitudinal sarcoplasmic reticullum comprises 5.0% of fiber volume, and its surface area per volume of fiber is 1.48 mum-1. Longitudinal bridges between terminal cisternae on either side of a Z disk were observed infrequently; they make up only 0.035% of fiber volume and their surface area per volume of fiber is 0.009 mum-1. T-SR junction occurs over 67% of the surface of transverse tubules and over 27% of the surface of terminal cisternae. The surface to volume ratio of the caveolae is 48 mum-1; caveolae may increase the sarcolemmal surface area by 47%. Essentially the same results were obtained from semitendinosus fibers.


1965 ◽  
Vol 25 (3) ◽  
pp. 209-231 ◽  
Author(s):  
Lee D. Peachey

The sarcoplasmic reticulum of the frog's sartorius muscle was examined by electron microscopy following sequential fixation in glutaraldehyde and osmium tetroxide and embedding in Epon. The earlier results of Porter and Palade on Ambystoma muscle were confirmed in the sartorius. In addition, the transverse tubules were observed to be continuous across the width of the fiber, a set of flat intermediate cisternae was seen to connect the terminal cisternae to the longitudinal tubules in the A band, and the continuous reticulum collar at the center of the A band was found to be perforated by circular and elongated pores (the fenestrated collar). The transverse tubules have a volume about 0.3 per cent of the fiber volume, and a surface area about 7 times the outer cylindrical surface area for a fiber 100 µ in diameter. The terminal cisternae, the intermediate cisternae, and the longitudinal tubules together with the fenestrated collar each have a volume of 4 to 5 per cent of the fiber volume and a surface area 40 to 50 times the outer surface area of a fiber 100 µ in diameter. Some evidence for continuity of the transverse tubules with the fiber surface is presented, but this is thought to be not so convincing as evidence presented by others. The results are discussed in terms of a possible mechanism for a role of the transverse tubules and sarcoplasmic reticulum in excitation-contraction coupling, as suggested by their morphology and a variety of physiological studies. In this scheme, the transverse tubules are thought to be electrically coupled to the terminal cisternae, so that depolarization of the fiber surface spreads inward along the transverse tubules and to the terminal cisternae, initiating the release of a contraction-activating substance.


1996 ◽  
Vol 107 (1) ◽  
pp. 1-18 ◽  
Author(s):  
N Shirokova ◽  
J García ◽  
G Pizarro ◽  
E Ríos

Puzzled by recent reports of differences in specific ligand binding to muscle Ca2+ channels, we quantitatively compared the flux of Ca2+ release from the sarcoplasmic reticulum (SR) in skeletal muscle fibers of an amphibian (frog) and a mammal (rat), voltage clamped in a double Vaseline gap chamber. The determinations of release flux were carried out by the "removal" method and by measuring the rate of Ca2+ binding to dyes in large excess over other Ca2+ buffers. To have a more meaningful comparison, the effects of stretching the fibers, of rapid changes in temperature, and of changes in the Ca2+ content of the SR were studied in both species. In both frogs and rats, the release flux had an early peak followed by fast relaxation to a lower sustained release. The peak and steady values of release flux, Rp and Rs, were influenced little by stretching. Rp in frogs was 31 mM/s (SEM = 4, n = 24) and in rats 7 +/- 2 mM/s (n = 12). Rs was 9 +/- 1 and 3 +/- 0.7 mM/s in frogs and rats, respectively. Transverse (T) tubule area, estimated from capacitance measurements and normalized to fiber volume, was greater in rats (0.61 +/- 0.04 microns-1) than in frogs (0.48 +/- 0.04 micron-1), as expected from the greater density of T tubuli. Total Ca in the SR was estimated as 3.4 +/- 0.6 and 1.9 +/- 0.3 mmol/liter myoplasmic water in frogs and rats. With the above figures, the steady release flux per unit area of T tubule was found to be fourfold greater in the frog, and the steady permeability of the junctional SR was about threefold greater. The ratio Rp/Rs was approximately 2 in rats at all voltages, whereas it was greater and steeply voltage dependent in frogs, going through a maximum of 6 at -40 mV, then decaying to approximately 3.5 at high voltage. Both Rp and Rs depended strongly on the temperature, but their ratio, and its voltage dependence, did not. Assuming that the peak of Ca2+ release is contributed by release channels not in contact with voltage sensors, or not under their direct control, the greater ratio in frogs may correspond to the relative excess of Ca2+ release channels over voltage sensors apparent in binding measurements. From the marked differences in voltage dependence of the ratio, as well as consideration of Ca(2+)-induced release models, we derive indications of fundamental differences in control mechanisms between mammalian and amphibian muscle.


1966 ◽  
Vol 28 (1) ◽  
pp. 109-126 ◽  
Author(s):  
David S. Smith

The cytological organization of flight muscle fibers of Odonata has been investigated. These fibers, in representatives of the Zygoptera and Anisoptera, have been compared and found to be similar, except that, in the former, pairs of lamellar fibrils, rather than single fibrils, alternate with the mitochondria. In each instance, in these synchronous muscles, the actin filaments of the myofibrils are found to lie opposite to and midway between pairs of myosin filaments—a configuration previously reported in asynchronous flight muscle fibers. The disposition of the T system and sarcoplasmic reticulum membranes in glutaraldehyde-fixed anisopteran muscle is described in detail: the T system tubules are shown to be radially continuous across the fiber, and are derived as openmouthed invaginations from the surface cell-membrane. The detailed organization of the dyad junctions between these tubules and the adjoining cisternae of the sarcoplasmic reticulum is described. The accessibility of the T system interior to diffusion exchange with the general extracellular milieu has been investigated by studies on the penetration of ferritin into the fiber: molecules of this marker have been found to diffuse solely along the T system tubules, and their presence in the tubule extremities adjoining the centrally placed nuclei confirms the morphological evidence suggesting that these tubules provide open diffusion channels extending across the radius of the fiber. The possible physiological role of these membrane components and their distribution in synchronous muscles of insects and vertebrates and in asynchronous insect flight muscle are discussed.


1998 ◽  
Vol 274 (6) ◽  
pp. C1718-C1726 ◽  
Author(s):  
Anthony J. Bakker ◽  
Stewart I. Head ◽  
Anthony C. Wareham ◽  
D. George Stephenson

We examined the effect of the β2-agonist clenbuterol (50 μM) on depolarization-induced force responses and sarcoplasmic reticulum (SR) function in muscle fibers of the rat ( Rattus norvegicus; killed by halothane overdose) that had been mechanically skinned, rendering the β2-agonist pathway inoperable. Clenbuterol decreased the peak of depolarization-induced force responses in the extensor digitorum longus (EDL) and soleus fibers to 77.2 ± 9.0 and 55.6 ± 5.4%, respectively, of controls. The soleus fibers did not recover. Clenbuterol significantly and reversibly reduced SR Ca2+loading in EDL and soleus fibers to 81.5 ± 2.8 and 78.7 ± 4.0%, respectively, of controls. Clenbuterol also produced an ∼25% increase in passive leak of Ca2+ from the SR of the EDL and soleus fibers. These results indicate that clenbuterol has direct effects on fast- and slow-twitch skeletal muscle, in the absence of the β2-agonist pathway. The increased Ca2+ leak in the triad region may lead to excitation-contraction coupling damage in the soleus fibers and could also contribute to the anabolic effect of clenbuterol in vivo.


1979 ◽  
Vol 237 (1) ◽  
pp. C50-C55 ◽  
Author(s):  
B. R. Eisenberg ◽  
R. T. Mathias ◽  
A. Gilai

Many experimental procedures require drastic alterations of muscle fibers, such as cutting the fiber or injecting molecular probes through microelectrodes. We report the ultrastructure of similarly altered muscle fibers and the intracellular distribution of injected horseradish peroxidase (HRP). Cut fibers appear structurally normal at distances greater than 500 microM from the cut end, however, the structure deteriorates nearer to the cut. HRP diffuses longitudinally about 2,000 micrometer from the cut end and the concentration is uniform over the fiber's cross section. If HRP is introduced intracellularly either by pressure injection or through a nick in the sarcolemma, it distributes in a C-shaped annulus extending approximately 2,000 micrometer longitudinally and 1–20 micrometer radially. The ultrastructure of injected or nicked fibers appears normal. The HRP freely entered the junctional gap between T-system and sarcoplasmic reticulum (SR) but was excluded from either structure. Occasionally, a light pillar could be seen between T-system and SR; the space of these pillars suggest they are the central area of the “feet” appearing light against the dark marker.


Sign in / Sign up

Export Citation Format

Share Document