scholarly journals ULTRASTRUCTURE AND ADENOSINE TRIPHOSPHATASE ACTIVITY OF RED AND WHITE MUSCLE FIBERS OF THE CAUDAL REGION OF A FISH, SALMO GAIRDNERI

1972 ◽  
Vol 55 (1) ◽  
pp. 42-57 ◽  
Author(s):  
Asish C. Nag

Electron microscopy, together with quantitation using a tracing device linked to a digital computer, reveals that the red and white muscle fibers of Salmo gairdneri differ in diameter, organization of myofibrils, dimensions of myofilaments, volumes and surface areas of T system and sarcoplasmic reticulum, morphology of mitochondria, and content of mitochondria, lipid, and glycogen. Biochemical studies show that the ATPase activity of white fibers is three times that of the red fibers. Actomyosin content of red fibers is higher than that of the white fibers. The functional significance of these differences between two fiber types is discussed.

1974 ◽  
Vol 60 (3) ◽  
pp. 732-754 ◽  
Author(s):  
Brenda R. Eisenberg ◽  
Aileen M. Kuda ◽  
James B. Peter

A quantitative analysis of the volumes, surface areas, and dimensions of the ultrastructural components in the soleus muscle fibers of the guinea pig was made by using point counting methods of stereology. Muscle fibers have structural orientation (anisotropy) and have spatial gradients of the structures within the fiber; therefore the standard stereological methods were modified where necessary. The entire analysis was repeated at two section orientations to test the modifications and identical results obtained from both. The volume of lipid droplets was 0.20 ± 0.06% (mean ± standard error, n = 5 animals) and the nuclei volume was 0.86 ± 0.20% of the fiber volume. The total mitochondrial volume was 4.85 ± 0.66% of the fiber volume with about one-third being found in an annulus within 1 µm of the sarcolemma. The mitochondrial volume in the remaining core of the fiber was 3.6 ± 0.4%. The T system has a volume of 0.14 ± 0.01% and a surface area of 0.064 ± 0.005 µm2/µm3 of the fiber volume. The surface area of the sarcolemma is 0.116 ± 0.013 µm2/µm3 which is twice the T system surface area. The volume of the entire sarcoplasmic reticulum is 3.52 ± 0.33% and the surface area is 0.97 ± 0.09 µm2/µm3. The sarcoplasmic reticulum is composed of the terminal cisternae whose volume is 1.04 ± 0.19% and surface area is 0.24 ± 0.05 µm2/µm3. The tubules of the sarcoplasmic reticulum in the I band and A band have volumes of 1.97 ± 0.24% and 0.51 ± 0.08%, and the surface areas of the I and A band reticulum are 0.56 ± 0.07 µm2/µm3 and 0.16 ± 0.04 µm2/µm3, respectively. The Z line width, myofibril and fiber diameters were measured.


1984 ◽  
Vol 62 (2) ◽  
pp. 235-240 ◽  
Author(s):  
H. J. Swatland

Samples of iliotibialis anterior and pectoralis muscles were taken from five ganders (Anser domesticus). Serial transverse sections were reacted for succinate dehydrogenase (SDH) and alkali-stable adenosine triphosphatase (ATPase). The distribution of SDH activity within individual muscle fibers was measured with a scanning photometer. In many individual fibers, SDH activity was stronger in the periphery than in the axis. This gradient was steepest (−0.034 ± 0.019 absorbance units per concentric zone of 2 μm diameter measurements) in pectoralis fibers with strong SDH activity. In the pectoralis, radial gradients were correlated with fiber area so that the smallest fibers tended to have the steepest gradients of SDH activity. However, this relationship was reversed in fibers with strong ATPase and weak SDH activity in the iliotibialis anterior, and the largest fibers tended to have the steepest gradients. In all fiber types of both muscles, fibers with greater mean SDH activity tended to have steeper gradients.


1987 ◽  
Vol 65 (4) ◽  
pp. 598-605 ◽  
Author(s):  
Brenda R. Eisenberg ◽  
David J. Dix ◽  
Zhaoying W. Lin ◽  
Mary P. Wenderoth

The structures and functions of the various subdivisions of the membrane systems of muscle are reviewed. Morphometric data have been recalculated using functional definitions of the membranes as identified by their proteins. Thus, the junctional coupling between the sarcoplasmic reticulum and T system is separated from the remaining longitudinal sarcoplasmic reticulum that bears the calcium ATPase protein. In addition, the morphometry of the membrane systems is related to the various muscle fiber types as defined histochemically and by protein isoforms. The relation of isomyosin type and membrane quantities are compared for guinea pig, chicken, frog, and lobster skeletal muscles and rat and rabbit cardiac muscles. Fiber plasticity is considered in terms of the mixing and matching of amounts and kinds of membranes and proteins.


1958 ◽  
Vol 4 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Vivianne T. Nachmias ◽  
Helen A. Padykula

The distribution and characterization of the fibers of normal and denervated red and white muscles of the albino rat are reported in this study. Histochemical procedures for succinic dehydrogenase, lipides, adenosinetriphosphatase, esterase, and glycogen were utilized to differentiate muscle fibers, and these methods facilitated the study of the distribution of fiber types within whole muscle. Muscle fibers of the granular type (dark or red fibers) can be clearly distinguished from those with clearer sarcoplasm (light or white fibers) by methods for demonstrating succinic dehydrogenase, lipides, and esterase. The method for adenosine-triphosphatase reveals differences only under the special conditions described in the text. Additional fiber types are described in the cat's diaphragm and in the extrinsic ocular muscles of the rat. Succinic dehydrogenase and adenosinetriphosphatase activities of the soleus and biceps femoris were studied 14 days after denervation of these muscles. The histochemical findings are discussed principally in the light of current biochemical knowledge of these enzymes.


1985 ◽  
Vol 249 (4) ◽  
pp. R449-R454 ◽  
Author(s):  
H. Abe ◽  
G. P. Dobson ◽  
U. Hoeger ◽  
W. S. Parkhouse

Histidine-related compounds (HRC) were analyzed in fish skeletal muscle as a means of identifying their precise role in intracellular buffering. Fish muscle was used because it contains two functionally and spatially distinct fiber types, red and white. Two fish species, rainbow trout (Salmo gairdneri) and the Pacific blue marlin (Makaira nigricans), were studied because these species demonstrate widely different activity patterns. Marlin red and white muscle buffer capacity was two times higher than trout with white muscle, buffering being two times greater than red in both species. Buffer capacity was highest in the 6.5–7.5 pH range for all tissues, which corresponded to their high anserine levels. The titrated HRC buffering was greater than the observed HRC buffering, which suggested that not all HRC were available to absorb protons. The HRC contribution to total cellular buffering varied from a high of 62% for marlin white to a low of 7% for trout red. The other principal buffers were found to be phosphate and protein with taurine contributing within red muscle in the 7.0–8.0 pH range. HRC were found to be dominant in skeletal muscle buffering by principally accounting for the buffering capacity differences found between the species and fiber types.


1990 ◽  
Vol 68 (3) ◽  
pp. 476-481 ◽  
Author(s):  
Gabriel Mutungi

Fiber types in the iliofibularis muscle of the savannah monitor lizard, Varanus exanthematicus, have been characterized on the basis of their histochemical characteristics and nerve endings. Four types of fibers were identified, three of which were focally innervated and the other, multiply innervated. They corresponded to the fast glycolytic, fast oxidative glycolytic, slow oxidative, and tonic fiber types of other lower vertebrates. The fibers isolated from the white and most of the fibers from the red regions had well defined end plates. However, 15 to 20% of the fibers isolated from the red region possessed an average of 17 ± 0.5 end plates per fiber. These end plates were placed 922 ± 54 μm apart and poorly defined. The mitochondrial volume of fibers isolated from the red region (12 ± 0.5%) was six times that of fibers isolated from the white region (2 ± 0.1%). Myofibrillar volumes were similar in fibers isolated from the two regions (81 ± 0.6%, white; 77 ± 0.2%, red). However, the capillary density of fibers from the red region (932 ± 64/mm2) was four and one-half times that of fibers isolated from the corresponding white region (200 ± 35/mm2).


1966 ◽  
Vol 28 (1) ◽  
pp. 109-126 ◽  
Author(s):  
David S. Smith

The cytological organization of flight muscle fibers of Odonata has been investigated. These fibers, in representatives of the Zygoptera and Anisoptera, have been compared and found to be similar, except that, in the former, pairs of lamellar fibrils, rather than single fibrils, alternate with the mitochondria. In each instance, in these synchronous muscles, the actin filaments of the myofibrils are found to lie opposite to and midway between pairs of myosin filaments—a configuration previously reported in asynchronous flight muscle fibers. The disposition of the T system and sarcoplasmic reticulum membranes in glutaraldehyde-fixed anisopteran muscle is described in detail: the T system tubules are shown to be radially continuous across the fiber, and are derived as openmouthed invaginations from the surface cell-membrane. The detailed organization of the dyad junctions between these tubules and the adjoining cisternae of the sarcoplasmic reticulum is described. The accessibility of the T system interior to diffusion exchange with the general extracellular milieu has been investigated by studies on the penetration of ferritin into the fiber: molecules of this marker have been found to diffuse solely along the T system tubules, and their presence in the tubule extremities adjoining the centrally placed nuclei confirms the morphological evidence suggesting that these tubules provide open diffusion channels extending across the radius of the fiber. The possible physiological role of these membrane components and their distribution in synchronous muscles of insects and vertebrates and in asynchronous insect flight muscle are discussed.


Sign in / Sign up

Export Citation Format

Share Document