scholarly journals Lanthanum: inhibition of ACTH-stimulated cyclic AMP and corticosterone synthesis in isolated rat adrenocortical cells.

1976 ◽  
Vol 68 (1) ◽  
pp. 142-153 ◽  
Author(s):  
A Haksar ◽  
D V Maudsley ◽  
F G Péron ◽  
E Bedigian

Lanthanum (La+++) is a well-known Ca++ antagonist in a number of biological systems. It was used in the present study to examine the role of Ca++ in the regulation of adenyl cyclase of the adrenal cortex by ACTH. In micromolar concentrations, .La+++ inhibited both cyclic AMP and corticosterone response of isolated adrenal cortex cells to ACTH. However, a number of intracellular processes were not affected by La+++. These include the stimulation of steroidogenesis by dibutyryl cyclic AMP, conversion of several steroid precursors into corticosterone, and stimulation of the latter by glucose. Thus, inhibition of steroidogenesis by La+++ appears to be solely due to an inhibition of ACTH-stimulated cyclic AMP formation. Electron microscope examination showed that La+++ was localized on plasma membrane of the cells and did not appear to penetrate beyond this region. Since La+++ is believed to replace Ca++ at superficial binding sites on the cell membrane, it is proposed that Ca++ at these sites plays an important role in the regulation of adenyl cyclase by ACTH. Similarities in the role of Ca++ in "excitation-contraction" coupling and in the ACTH-adenyl cyclase system raise the possibility that a contractile protein may be involved in the regulation of adenyl cyclase by those hormones which are known to require Ca++ in the process.

1972 ◽  
Vol 56 (1) ◽  
pp. 139-153
Author(s):  
MICHAEL J. BERRIDGE ◽  
WILLIAM T. PRINCE

1. The role of cyclic AMP in mediating the action of 5-HT on salivary glands has been studied by measuring transepithelial potentials. 2. The lumen of unstimulated glands is 4 mV positive but becomes 12 mV negative after treatment with 5-HT (10-8M). Both the potential and the secretory responses to 5-HT are dose-dependent over the same concentration range. 3. The electrical response of salivary glands to cyclic AMP is qualitatively different to that of 5-HT; instead of going negative the potential goes more positive. 4. An increase in positive potential is also observed after treatment with theophylline (10-2M), or when glands are stimulated with 5-HT in a chloride-free saline. 5. These results are consistent with the idea that 5-HT has two actions. One is to stimulate the enzyme adenyl cyclase to synthesize cyclic AMP, which, in turn, stimulates cation transport. The other is to increase anion transport by a mechanism which is independent of cyclic AMP.


PEDIATRICS ◽  
1972 ◽  
Vol 50 (1) ◽  
pp. 3-4
Author(s):  
Wallace W. McCrory

The role of cyclic AMP (adenosine 3’,5’-monophosphate) in hormone action is now quite firmly established. Abundant evidence now demonstrates that after release from an endocrine gland a hormone (first messenger) is transported to its effector cell (target) where it interacts with the adenyl cyclase system to release cyclic AMP (second messenger) which acts intracellularly to carry out the work of the hormone. In 1967, Chase and Aurbach demonstrated that urinary cyclic AMP, now known to be derived from both plasma and kidney, increased when parathormone (PTH) was administered to the rat and man. These workers also demonstrated a PTH-sensitive adenyl cyclase in the proximal tubules of the rat kidney and in fetal bone.


The effects of various concentrations of extracellular K + (3.6 - 13 mM) on the steroid (corticosterone and aldosterone) and cyclic AMP outputs of capsular cells (95% zona glomerulosa) of the rat adrenal cortex were studied at different concentrations of extracellular Ca 2+ . Small amounts of EGTA (50 μM) were added to reduce the free Ca 2+ concentrations effectively to zero at the lowest possible total Ca 2+ concentration. At a total extracellular concentration of 2.5 mM Ca 2+ , in 27 experiments the mean values of the steroid and cAMP outputs showed a maximum at 8.4 mM K + . The increase in steroid and cAMP outputs at 5.9, 8.4 and 13 mM K + compared with that at 3.6 mM were highly significant ( p < 0.01). The overall correlation of either corticosterone or aldosterone with cAMP outputs was also highly significant and was even better from 3.6 to 8.4 mM K + . Lowering the effective free concentration of Ca 2+ to zero decreased the steroid and cAMP outputs significantly at all K + concentrations, and no output was then significantly higher than at 3.6 mM. With the pooled data on outputs at all total Ca 2+ (2.5, 0.5, 0.25, 0.10, 0.05 and 0.0 mM) and K + (3.6, 5.9, 8.4 and 13 mM) concentrations, the correlation of either steroid with cAMP outputs was highly significant (but again optimally from 3.6 to 8.4 mM K + ). Nifedipine (10 -6 to 10 -4 M) was added to the incubations with the aim of specifically inhibiting Ca 2+ influx at total extracellular Ca 2+ concentra­tions of 2.5, 1.25 and 0.25 mM and with the usual K + concentrations. The cAMP outputs were reduced at all K + concentrations above 3.6 mM K + . The effect was highly significant at 10 -4 M nifedipine and a total Ca 2+ of 1.25 mM, which with the incubation conditions used, corresponds to the free Ca 2+ concentrations in vivo . These results indicate that cAMP plays a significant role in the stimulation of steroid output by K + particularly between 3.6 and 8.4 mM K + . In this range of K + concentrations the stimulation of cAMP seems to be controlled by increases in Ca 2+ influx. The correlation of steroid and cAMP output at the higher K + concentra­tions (between 8.4 and 13 mM K) and at the various total Ca 2+ concentra­tions is less significant. Also, with all concentrations of added nifedipine there is an ‘anomalous’ increase in steroid output at 13 mM K + and at total Ca 2+ concentrations of 2.5 and 1.25 mM. However, at the same K + concentrations and at 0.25 mM Ca 2+ , nifedipine decreases steroid outputs. Our previous data, obtained after addition of maximally effective amounts of cAMP, indicated that there were also non-cAMP mechanisms involved in the stimulation of steroidogenesis by K + in z. g. cells. The present data confirm this conclusion, particularly at K + concentrations above 8.4 mM. They also indicate that at these higher K + concentrations, by non-cAMP mechanisms increasing intracellular Ca 2+ concentrations probably inhibit steroidogenesis. We conclude, however, that in the physiological range of K + concentra­tions, the role of cAMP in zona glomerulosa cells is at least comparable in importance to that of non-cAMP mechanisms.


1975 ◽  
Vol 34 (01) ◽  
pp. 042-049 ◽  
Author(s):  
Shuichi Hashimoto ◽  
Sachiko Shibata ◽  
Bokro Kobayashi

SummaryThe radioactive adenosine 3′,5′-monophosphate (cyclic AMP) level derived from 8-14C adenine in intact rabbit platelets decreased in the presence of mitochondrial inhibitor (potassium cyanide) or uncoupler (sodium azide), and markedly increased by the addition of NaF, monoiodoacetic acid (MIA), or 2-deoxy-D-glucose. The stimulative effect of the glycolytic inhibitors was distinctly enhanced by the simultaneous addition of sodium succinate. MIA did neither directly stimulate the adenyl cyclase activity nor inhibit the phosphodiesterase activity. These results suggest that cyclic AMP synthesis in platelets is closely linked to mitochondrial oxidative phosphorylation.


1987 ◽  
Vol 242 (3) ◽  
pp. 655-660 ◽  
Author(s):  
M J Fisher ◽  
A J Dickson ◽  
C I Pogson

The stimulation of phenylalanine hydroxylation in isolated liver cells by sub-maximally effective concentrations of glucagon (less than 0.1 microM) is antagonized by insulin (0.1 nM-0.1 microM). This phenomenon is a consequence of a decrease in the glucagon-stimulated phosphorylation of phenylalanine hydroxylase from liver cells incubated in the presence of insulin. The impact of insulin on the phosphorylation state and activity of the hydroxylase is mimicked by incubation of liver cells in the presence of orthovanadate (10 microM). A series of cyclic AMP and cyclic GMP analogues enhanced phenylalanine hydroxylation: in each case insulin diminished the stimulation of flux. These results are discussed in the light of the characteristics of insulin action on other metabolic processes.


1979 ◽  
Vol 237 (5) ◽  
pp. C200-C204 ◽  
Author(s):  
D. J. Stewart ◽  
J. Sax ◽  
R. Funk ◽  
A. K. Sen

Stimulation of salt galnd secretion in domestic ducks in vivo increased the cyclic GMP concentration of the tissue, but had no effect on cyclic AMP levels. Methacholine, which is known to stimulate sodium transport by the glands both in vivo and in vitro, stimulated ouabain-sensitive respiration in salt gland slices. Cyclic GMP stimulated ouabain-sensitive respiration to the same extent as methacholine. Guanylate cyclase stimulators, hydroxylamine and sodium azide, also stimulated ouabain-sensitive respiration. The stimulation of ouabain-sensitive respiration by methacholine was blocked either by atropine or by removal of calcium from the incubation medium. The stimulation of ouabain-sensitive respiration by cyclic GMP still occurred in the absence of calcium. The above observations seem to indicate that cyclic GMP acts as a tertiary link in the process of stimulus-secretion coupling in the tissue.


Endocrinology ◽  
1973 ◽  
Vol 92 (5) ◽  
pp. 1349-1353 ◽  
Author(s):  
M. ZAKARIJA ◽  
J. M. MC KENZIE ◽  
C. H. BASTOMSKY

1987 ◽  
Vol 7 (10) ◽  
pp. 751-755 ◽  
Author(s):  
Abdulrahim Abu-Jayyab ◽  
Ezz-Eddin S. M. El-Denshary ◽  
Abdulrahman M. Ageel ◽  
Mohamed Rafik Dakkak

Short-term and long-term effects of bromocriptine mesylate (10 mg/kg i.p.) on cyclic AMP contents of the liver and some endocrine glands have been investigated in the presence and absence of sulpiride (10 mg/kg i.p.). Results revealed that bromocriptine caused significant elevations in the cyclic AMP contents of the liver and reduction in its adrenocortical content. Bromocriptine effect on the adrenal cortex was antagonized by sulpiride, whereas its effect on the liver was not changed. Bromocriptine did not change the, cyclic AMP content in the thyroid gland or the ovary.


Sign in / Sign up

Export Citation Format

Share Document