scholarly journals Presence of the myelin-associated glycoprotein correlates with alterations in the periodicity of peripheral myelin.

1982 ◽  
Vol 92 (3) ◽  
pp. 877-882 ◽  
Author(s):  
B D Trapp ◽  
R H Quarles

The myelin-associated glycoprotein (MAG) is an integral membrane protein (congruent to 100,000 mol wt) which is a minor component of purified peripheral nervus system (PNS) myelin. In the present study, MAG was localized immunocytochemically in 1-micrometer thick Epon sections of 7-d and adult rat peripheral nerves, and its localization was compared to that of the major structural protein (Po) of PNS myelin. To determine more precisely the localization of MAG, immunostained areas in 1 micrometer sections were traced on electron micrographs of identical areas from adjacently cut thin sections.l MAG was localized in periaxonal membranes. Schmidt-Lantermann incisures, paranodal membranes, and the outer mesaxon of PNS myelin sheaths. Compact regions of PNS myelin did not react with MAG antiserum. The results demonstrate MAG's presence in "'semi-compact" Schwann cell or myelin membranes that have a gap of 12-14 nm between extracellular leaflets and a spacing of 5 nm or more between cytoplasmic leaflets. In compact regions of the myelin sheath which do not contain MAG, the cytoplasmic leaflets are "fused" and form the major dense line, whereas the extracellular leaflets are separated by a 2.0 nm gap appearing as paired minor dense lines. Thus, it is proposed that MAG plays a role in maintaining the periaxonal space, Schmidt-Lantermann incisures, paranodal myelin loops, and outer mesaxon by preventing "complete" compaction of Schwann cell and myelin membranes. The presence of MAG in these locations also suggests that MAG may serve a function in regulating myelination in the PNS.

1984 ◽  
Vol 98 (4) ◽  
pp. 1272-1278 ◽  
Author(s):  
B D Trapp ◽  
R H Quarles ◽  
J W Griffin

The myelin-associated glycoprotein (MAG) is a heavily glycosylated integral membrane glycoprotein which is a minor component of isolated rat peripheral nervous system (PNS) myelin. Immunocytochemically MAG has been localized in the periaxonal region of PNS myelin sheaths. The periaxonal localization and biochemical features of MAG are consistent with the hypothesis that MAG plays a role in maintaining the periaxonal space of myelinated fibers. To test this hypothesis, MAG was localized immunocytochemically in 1-micron sections of the L5 ventral root from rats exposed to B,B'-iminodipropionitrile. In chronic states of B,B'-iminodipropionitrile intoxication, Schwann cell periaxonal membranes and the axolemma invaginate into giant axonal swellings and separate a central zone of normally oriented axoplasm from an outer zone of maloriented neurofilaments. Ultrastructurally, the width of the periaxonal space (12-14 nm) in the ingrowths is identical to that found in normally myelinated fibers. These Schwann cell ingrowths which are separated from compact myelin by several micra are stained intensely by MAG antiserum. Antiserum directed against Po protein, the major structural protein of compact PNS myelin, does not stain the ingrowths unless compact myelin is present. These results demonstrate the periaxonal localization of MAG and support a functional role for MAG in maintaining the periaxonal space of PNS myelinated fibers.


2000 ◽  
Vol 148 (5) ◽  
pp. 1009-1020 ◽  
Author(s):  
X. Yin ◽  
G.J. Kidd ◽  
L. Wrabetz ◽  
M.L. Feltri ◽  
A. Messing ◽  
...  

This report investigated mechanisms responsible for failed Schwann cell myelination in mice that overexpress P0 (P0tg), the major structural protein of PNS myelin. Quantitative ultrastructural immunocytochemistry established that P0 protein was mistargeted to abaxonal, periaxonal, and mesaxon membranes in P0tg Schwann cells with arrested myelination. The extracellular leaflets of P0-containing mesaxon membranes were closely apposed with periodicities of compact myelin. The myelin-associated glycoprotein was appropriately sorted in the Golgi apparatus and targeted to periaxonal membranes. In adult mice, occasional Schwann cells myelinated axons possibly with the aid of endocytic removal of mistargeted P0. These results indicate that P0 gene multiplication causes P0 mistargeting to mesaxon membranes, and through obligate P0 homophilic adhesion, renders these dynamic membranes inert and halts myelination.


1995 ◽  
Vol 108 (8) ◽  
pp. 2771-2780 ◽  
Author(s):  
T. Kojima ◽  
T. Mitaka ◽  
Y. Shibata ◽  
Y. Mochizuki

In the adult rat hepatocyte, the gap junction proteins consist of a major component, connexin32 (Cx32) and a minor component, connexin26 (Cx26). Although we recently reported our success in inducing and maintaining Cx32 in adult rat hepatocytes cultured in serum-free L-15 medium supplemented with epidermal growth factor and 2% dimethyl sulfoxide, it was very difficult to induce Cx26 in the primary hepatocytes. In the present study, we found that the addition of 10(−7) M glucagon into the culture medium could dramatically induce Cx26 mRNA and protein. Although the expression of Cx32 mRNA was also influenced by glucagon, the increase of the expression was small. Immunocytochemically, Cx26-positive spots were observed between most adjacent cells and were co-localized with the Cx32-positive spots. We also examined whether 0.5 mM dibutyl cyclic AMP could induce expression of Cx26 in the cells. The effect of dexamethasone on the expression of Cx26 mRNA compared to that of Cx32 mRNA was examined. For the induction and maintenance of Cx26 mRNA, more than 10(−7) M dexamethasone was necessary in this culture. These results suggest that expression of Cx26 in hepatocytes may be regulated by the concentrations of glucagon and glucocorticoid hormones.


1988 ◽  
Vol 107 (2) ◽  
pp. 675-685 ◽  
Author(s):  
B D Trapp

Ultrastructural studies have shown that during early stages of Schwann cell myelination mesaxon membranes are converted to compact myelin lamellae. The distinct changes that occur in the spacing of these Schwann cell membranes are likely to be mediated by the redistribution of (a) the myelin-associated glycoprotein, a major structural protein of mesaxon membranes; and (b) P0 protein, the major structural protein of compact myelin. To test this hypothesis, the immunocytochemical distribution of these two proteins was determined in serial 1-micron-thick Epon sections of ventral roots from quaking mice and compared to the ultrastructure of identical areas in an adjacent thin section. Ventral roots of this hypomyelinating mouse mutant were studied because many fibers have a deficit in converting mesaxon membranes to compact myelin. The results indicated that conversion of mesaxon membranes to compact myelin involves the insertion of P0 protein into and the removal of the myelin-associated glycoprotein from mesaxon membranes. The failure of some quaking mouse Schwann cells to form compact myelin appears to result from an inability to remove the myelin-associated glycoprotein from their mesaxon membranes.


1988 ◽  
Vol 102 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Elio Scarpini ◽  
Barbara Q. Kreider ◽  
Robert P. Lisak ◽  
David E. Pleasure

1984 ◽  
Vol 99 (2) ◽  
pp. 594-606 ◽  
Author(s):  
B D Trapp ◽  
R H Quarles ◽  
K Suzuki

The myelin-associated glycoprotein (MAG) is an integral membrane glycoprotein that is located in the periaxonal membrane of myelin-forming Schwann cells. On the basis of this localization, it has been hypothesized that MAG plays a structural role in (a) forming and maintaining contact between myelinating Schwann cells and the axon (the 12-14-nm periaxonal space) and (b) maintaining the Schwann cell periaxonal cytoplasmic collar of myelinated fibers. To test this hypothesis, we have determined the immunocytochemical localization of MAG in the L4 ventral roots from 11-mo-old quaking mice. These roots display various stages in the association of remyelinating Schwann cells with axons, and abnormalities including loss of the Schwann cell periaxonal cytoplasmic collar and dilation of the periaxonal space of myelinated fibers. Therefore, this mutant provides distinct opportunities to observe the relationships between MAG and (a) the formation of the periaxonal space during remyelination and (b) the maintenance of the periaxonal space and Schwann cell periaxonal cytoplasmic collar in myelinated fibers. During association of remyelinating Schwann cells and axons, MAG was detected in Schwann cell adaxonal membranes that apposed the axolemma by 12-14 nm. Schwann cell plasma membranes separated from the axolemma by distances greater than 12-14 nm did not react with MAG antiserum. MAG was present in adaxonal Schwann cell membranes that apposed the axolemma by 12-14 nm but only partially surrounded the axon and, therefore, may be actively involved in the ensheathment of axons by remyelinating Schwann cells. To test the dual role of MAG in maintaining the periaxonal space and Schwann cell periaxonal cytoplasmic collar of myelinated fibers, we determined the immunocytochemical localization of MAG in myelinated quaking fibers that displayed pathological alterations of these structures. Where Schwann cell periaxonal membranes were not stained by MAG antiserum, the cytoplasmic side of the periaxonal membrane was "fused" with the cytoplasmic side of the inner compact myelin lamella and formed a major dense line. This loss of MAG and the Schwann cell periaxonal cytoplasmic collar usually resulted in enlargement of the 12-14-nm periaxonal space and ruffling of the apposing axolemma. In myelinated fibers, there was a strict correlation between the presence of MAG in the Schwann cell periaxonal membrane and (a) maintenance of the 12-14-nm periaxonal space, and (b) presence of the Schwann cell periaxonal cytoplasmic collar.(ABSTRACT TRUNCATED AT 400 WORDS)


1989 ◽  
Vol 109 (5) ◽  
pp. 2417-2426 ◽  
Author(s):  
B D Trapp ◽  
S B Andrews ◽  
C Cootauco ◽  
R Quarles

The myelin-associated glycoprotein (MAG) is a member of the immunoglobulin gene superfamily that is selectively expressed by myelin-forming cells. A developmentally regulated, alternative splicing of a single MAG transcript produces two MAG polypeptides (72 and 67 kD) in the central nervous system (CNS). MAG occurs predominantly as the 67-kD polypeptide in the peripheral nervous system (PNS). This study determined the subcellular localization of CNS MAG at different postnatal times when the 72-kD form (7-d) and 67-kD form (adult) are quantitatively abundant. These distributions were also compared to those of MAG in the PNS. In adult rat, MAG is selectively enriched in periaxonal membranes of CNS myelin internodes. This restricted distribution differs from that in PNS myelin internodes where MAG is also enriched in paranodal loops, Schmidt-Lanterman incisures, and mesaxon membranes. In 7-d-old rat CNS, MAG was associated with periaxonal membranes during axonal ensheathment and enriched in Golgi membranes and cytoplasmic organelles having the appearance of multivesicular bodies (MVBs). MAG-enriched MVBs were found in oligodendrocyte perinuclear regions, in processes extending to myelin internodes, and along the myelin internode in outer tongue processes and paranodal loops. MAG-enriched MVBs were not found in oligodendrocytes from adult animals or in myelinating Schwann cells. These findings raise the possibility that the 72-kD MAG polypeptide is associated with receptor-mediated endocytosis of components from the periaxonal space or axolemma during active stages of myelination.


2009 ◽  
Vol 74 (10) ◽  
pp. 1543-1557 ◽  
Author(s):  
Herman P. Van Leeuwen ◽  
Raewyn M. Town

The degree of (de)protonation of aqueous metal species has significant consequences for the kinetics of complex formation/dissociation. All protonated forms of both the ligand and the hydrated central metal ion contribute to the rate of complex formation to an extent weighted by the pertaining outer-sphere stabilities. Likewise, the lifetime of the uncomplexed metal is determined by all the various protonated ligand species. Therefore, the interfacial reaction layer thickness, μ, and the ensuing kinetic flux, Jkin, are more involved than in the conventional case. All inner-sphere complexes contribute to the overall rate of dissociation, as weighted by their respective rate constants for dissociation, kd. The presence of inner-sphere deprotonated H2O, or of outer-sphere protonated ligand, generally has a great impact on kd of the inner-sphere complex. Consequently, the overall flux can be dominated by a species that is a minor component of the bulk speciation. The concepts are shown to provide a good description of experimental stripping chronopotentiometric data for several protonated metal–ligand systems.


Sign in / Sign up

Export Citation Format

Share Document