scholarly journals Solution and surface effects on plasma fibronectin structure.

1983 ◽  
Vol 97 (6) ◽  
pp. 1686-1692 ◽  
Author(s):  
N M Tooney ◽  
M W Mosesson ◽  
D L Amrani ◽  
J F Hainfeld ◽  
J S Wall

As assessed by electron microscopy, the reported shape of the plasma fibronectin molecule ranges from that of a compact particle to an elongated, rod-like structure. In this study, we evaluated the effects of solution and surface conditions on fibronectin shape. Freeze-dried, unstained human plasma fibronectin molecules deposited at pH 7.0-7.4 onto carbon films and examined by scanning transmission electron microscopy appeared relatively compact and pleiomorphic, with approximate average dimensions of 24 nm X 16 nm. Negatively stained molecules also had a similar shape but revealed greater detail in that we observed irregular, yarn-like structures. Glutaraldehyde-induced intramolecular cross-linking did not alter the appearance of plasma fibronectin. Molecules deposited at pH 2.8, pH 9.3, or after succinylation were less compact than those deposited at neutral pH. In contrast, fibronectin molecules sprayed onto mica surfaces at pH 7, rotary shadowed, and examined by transmission electron microscopy were elongated and nodular with a contour length of 120-130 nm. Sedimentation velocity experiments and electron microscopic observations indicate that fibronectin unfolds when it is succinylated, when the ionic strength is raised at pH 7, or when the pH is adjusted to 9.3 or 2.8. Greater unfolding is observed at pH 2.8 at low ionic strength (less than 0.01) compared with material at that pH in 0.15 M NaCl solution. We conclude that (a) the shape assumed by the fibronectin molecule can be strongly affected by solution conditions and by deposition onto certain surfaces; and that (b) the images of fibronectin seen by scanning transmission electron microscopy at neutral pH on carbon film are representative of molecules in physiologic solution.

Author(s):  
P. S. Furcinitti ◽  
J. S. Wall ◽  
M. G. Hamilton ◽  
T. T. Herskovits

Hemocyanins are copper containing, oxygen binding proteins found in many invertebrate species of the phyla Arthropoda and Mollusca. Molluscan hemocyanins are cylindrical macromolecular assemblies of a basic decameric unit. The hemocyanins of two chitons, Stenonlax conspicua and Mopalia muscosa. are decamers, while those of two gastropods, Fasciolaria tulipa and Pleuroplora gieantea. are di-decamers. The hemocyanins of a third gastropod species, Busvcon contrarium can exist in a spectrum of multi-decameric forms. Molecular weights of the various types of molluscan hemocyanins were measured by absolute light scattering and Scanning Transmission Electron Microscopy (STEM) as a first step in understanding multi-decamer formation in some types of hemocyanins.Hemocyanins were prepared as previously described, dialyzed into 1M HEPES buffer, pH 7.4, containing 0.05M MgCl and freeze-dried or negatively stained for STEM analysis. Specimens were examined at the Brookhaven STEM Biotechnology Resource, which was operated at 40 kV using a -140°C cold stage. The elastically scattered electron signal from the STEM large angle annular detector was used to form the images.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1158-1162 ◽  
Author(s):  
MW Mosesson ◽  
ME Nesheim ◽  
J DiOrio ◽  
JF Hainfeld ◽  
JS Wall ◽  
...  

Abstract We studied purified bovine factor V (mol wt 330,000) by scanning transmission electron microscopy (STEM) of freeze-dried unstained or negatively contrasted preparations. Freeze-dried molecules revealed discrete shapes ranging from roughly spheroidal (100 to 120 nm) to oblong (140 to 200 nm in length X 50 to 100 nm in width). Oblong shapes could often be resolved into two or three distinct domains, ranging from 60 to 100 nm in diameter. A “satellite” nodular structure (30 to 50 nm in diameter) connected to the main molecule by a thin stalk (approximately 10 nm wide) up to 80 nm in length was occasionally seen. Glutaraldehyde-treated preparations yielded the same shapes as were seen in unfixed preparations but revealed better definition of submolecular features and “satellite” nodules. STEM mass analysis confirmed that each of the different shapes represented a monomolecular form of factor V. Negatively stained images revealed objects having the same general shapes as freeze-dried molecules, although greater detail was evident. Some images suggested that molecules consist of five or more discrete parts. Taken together, these observations indicate that factor V molecules are multidomainal, flexible structures that tend to have an irregular oblong shape with an axial ratio between 3:2 and 2:1.


Blood ◽  
1985 ◽  
Vol 65 (5) ◽  
pp. 1158-1162
Author(s):  
MW Mosesson ◽  
ME Nesheim ◽  
J DiOrio ◽  
JF Hainfeld ◽  
JS Wall ◽  
...  

We studied purified bovine factor V (mol wt 330,000) by scanning transmission electron microscopy (STEM) of freeze-dried unstained or negatively contrasted preparations. Freeze-dried molecules revealed discrete shapes ranging from roughly spheroidal (100 to 120 nm) to oblong (140 to 200 nm in length X 50 to 100 nm in width). Oblong shapes could often be resolved into two or three distinct domains, ranging from 60 to 100 nm in diameter. A “satellite” nodular structure (30 to 50 nm in diameter) connected to the main molecule by a thin stalk (approximately 10 nm wide) up to 80 nm in length was occasionally seen. Glutaraldehyde-treated preparations yielded the same shapes as were seen in unfixed preparations but revealed better definition of submolecular features and “satellite” nodules. STEM mass analysis confirmed that each of the different shapes represented a monomolecular form of factor V. Negatively stained images revealed objects having the same general shapes as freeze-dried molecules, although greater detail was evident. Some images suggested that molecules consist of five or more discrete parts. Taken together, these observations indicate that factor V molecules are multidomainal, flexible structures that tend to have an irregular oblong shape with an axial ratio between 3:2 and 2:1.


Author(s):  
F. Khoury ◽  
L. H. Bolz

The lateral growth habits and non-planar conformations of polyethylene crystals grown from dilute solutions (<0.1% wt./vol.) are known to vary depending on the crystallization temperature.1-3 With the notable exception of a study by Keith2, most previous studies have been limited to crystals grown at <95°C. The trend in the change of the lateral growth habit of the crystals with increasing crystallization temperature (other factors remaining equal, i.e. polymer mol. wt. and concentration, solvent) is illustrated in Fig.l. The lateral growth faces in the lozenge shaped type of crystal (Fig.la) which is formed at lower temperatures are {110}. Crystals formed at higher temperatures exhibit 'truncated' profiles (Figs. lb,c) and are bound laterally by (110) and (200} growth faces. In addition, the shape of the latter crystals is all the more truncated (Fig.lc), and hence all the more elongated parallel to the b-axis, the higher the crystallization temperature.


2000 ◽  
Vol 638 ◽  
Author(s):  
Alan D.F. Dunbar ◽  
Matthew P. Halsall ◽  
Uschi Bangert ◽  
Alan Harvey ◽  
Philip Dawson ◽  
...  

AbstractWe report optical and scanning transmission electron microscopy studies of germanium dots grown on silicon. In an attempt to control the self-organized growth process and promote dot size uniformity the dot layers were grown on a 4.5nm Si0.6Ge0.4 alloy template layer. Photoluminescence results indicate the formation of carrier confining Ge rich islands, whilst Raman scattering results indicate the presence of an alloy throughout the structures formed. The samples were studied in the UK high resolution scanning transmission electron microscopy facility at Liverpool, UK. Energy dispersive analysis of individual line scans through the sample show that the structures are composed of an alloy throughout with an asymmetric distribution of Germanium in the dots and in the wetting layer close to the dots. We discuss the results in the light of the proposed growth mode for these dots and conclude that attempts to manipulate the composition of these dots during growth may be problematic due to the self-organized nature of their formation.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1116-1117
Author(s):  
PJ Kempen ◽  
AS Thakor ◽  
CL Zavaleta ◽  
SS Gambhir ◽  
R Sinclair

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Sign in / Sign up

Export Citation Format

Share Document