scholarly journals Extracellular Na+ and initiation of DNA synthesis: role of intracellular pH and K+.

1984 ◽  
Vol 98 (3) ◽  
pp. 1082-1089 ◽  
Author(s):  
C P Burns ◽  
E Rozengurt

Initiation of DNA synthesis in confluent quiescent 3T3 cell cultures stimulated by epidermal growth factor (EGF), vasopressin, and insulin was abolished by removing extracellular Na+. The inhibition was reversible, time- and Na+-concentration-dependent, and not due to an effect on binding or internalization of 125I-EGF. Stimulation by combinations of other growth factors with different mechanisms of action was also affected by decreasing extracellular Na+, but with different half-maximal Na+ concentrations. When choline was used as an osmotic substitute for Na+, the decrease in DNA synthesis was correlated with the decrease in intracellular K+. In contrast, when sucrose was used there was stimulation of the Na+-K+ pump and maintenance of intracellular K+ that resulted in a somewhat higher rate of DNA synthesis at lowered extracellular Na+ compared to choline. Mitogenesis induced by epidermal growth factor, vasopressin, and insulin led to cytoplasmic alkalinization as determined by an increase in uptake of the weak acid 5,5-dimethyloxazolidine-2,4-dione. Experimental decrease in extracellular Na+ blocked this cellular alkalinization. Therefore, under some conditions the supply of extracellular Na+ may limit cellular proliferation because of a reduction in the provision of Na+ to the Na+/H+ antiport and resultant failure of alkalinization. We conclude that Na+ flux and its effect on intracellular K and pH has a major role in the complex system that regulates proliferation.

1988 ◽  
Vol 255 (4) ◽  
pp. C447-C451 ◽  
Author(s):  
D. A. Grosenbaugh ◽  
M. S. Amoss ◽  
D. M. Hood ◽  
S. J. Morgan ◽  
J. D. Williams

Epidermal growth factor (EGF) receptor binding kinetics and EGF-mediated stimulation of DNA synthesis and cellular proliferation were studied in cultured vascular smooth muscle cells (VSMC) from the equine thoracic aorta. Binding studies, using murine 125I-labeled EGF, indicate the presence of a single class of high-affinity binding sites (apparent KD = 2.8 X 10(-11) M), with an estimated maximal binding capacity of 5,800 sites/cell. EGF stimulated [3H]thymidine uptake in confluent quiescent monolayers in a dose-dependent fashion, half-maximal stimulation occurring at 7.5 X 10(-11) M. Likewise, EGF-mediated cellular proliferation was dose dependent (50% effective dose = 5 X 10(-11) M) under reduced serum concentrations. Equine VSMC contain specific receptors for EGF, and EGF can stimulate DNA synthesis and proliferation in these cultured cells, which suggests that EGF may participate in the proliferative changes observed in equine distal digital peripheral vascular disease.


1995 ◽  
Vol 15 (1) ◽  
pp. 120-128 ◽  
Author(s):  
B Lecka-Czernik ◽  
C K Lumpkin ◽  
S Goldstein

We carried out subtractive enrichment of a cDNA library derived from mRNA of senescent human diploid fibroblasts (HDF) established from a subject with Werner syndrome of premature aging. By differential screening, we isolated an overexpressed cDNA sequence (S1-5) that codes for a novel protein containing epidermal growth factor (EGF)-like domains which match the EGF-like consensus sequences within several known extracellular proteins that play a role in cell growth, development, and cell signalling. S1-5 mRNA is overexpressed in Werner syndrome and senescent normal HDF, is induced by growth arrest of young normal cells, but is significantly decreased by high serum, conditions which promote cellular proliferation. Paradoxically, microinjection into young HDF of two different lengths of S1-5 mRNA, containing different putative AUG translational start sites, consistently stimulated rather than inhibited DNA synthesis by an apparent autocrine/paracrine mechanism. Thus, the S1-5 gene product may represent a negative and/or positive factor whose ultimate activity is modulated by the cell environment as occurs with other members of EGF-like family.


Sign in / Sign up

Export Citation Format

Share Document