scholarly journals Heterotypic binding between neuronal membrane vesicles and glial cells is mediated by a specific cell adhesion molecule.

1984 ◽  
Vol 98 (5) ◽  
pp. 1746-1756 ◽  
Author(s):  
M Grumet ◽  
G M Edelman

By means of a multistage quantitative assay, we have identified a new kind of cell adhesion molecule (CAM) on neuronal cells of the chick embryo that is involved in their adhesion to glial cells. The assay used to identify the binding component (which we name neuron-glia CAM or Ng-CAM) was designed to distinguish between homotypic binding (e.g., neuron to neuron) and heterotypic binding (e.g., neuron to glia). This distinction was essential because a single neuron might simultaneously carry different CAMs separately mediating each of these interactions. The adhesion of neuronal cells to glial cells in vitro was previously found to be inhibited by Fab' fragments prepared from antisera against neuronal membranes but not by Fab' fragments against N-CAM, the neural cell adhesion molecule. This suggested that neuron-glia adhesion is mediated by specific cell surface molecules different from previously isolated CAMs . To verify that this was the case, neuronal membrane vesicles were labeled internally with 6-carboxyfluorescein and externally with 125I-labeled antibodies to N-CAM to block their homotypic binding. Labeled vesicles bound to glial cells but not to fibroblasts during a 30-min incubation period. The specific binding of the neuronal vesicles to glial cells was measured by fluorescence microscopy and gamma spectroscopy of the 125I label. Binding increased with increasing concentrations of both glial cells and neuronal vesicles. Fab' fragments prepared from anti-neuronal membrane sera that inhibited binding between neurons and glial cells were also found to inhibit neuronal vesicle binding to glial cells. The inhibitory activity of the Fab' fragments was depleted by preincubation with neuronal cells but not with glial cells. Trypsin treatment of neuronal membrane vesicles released material that neutralized Fab' fragment inhibition; after chromatography, neutralizing activity was enriched 50-fold. This fraction was injected into mice to produce monoclonal antibodies; an antibody was obtained that interacted with neurons, inhibited binding of neuronal membrane vesicles to glial cells, and recognized an Mr = 135,000 band in immunoblots of embryonic chick brain membranes. These results suggest that this molecule is present on the surfaces of neurons and that it directly or indirectly mediates adhesion between neurons and glial cells. Because the monoclonal antibody as well as the original polyspecific antibodies that were active in the assay did not bind to glial cells, we infer that neuron-glial interaction is heterophilic, i.e., it occurs between Ng-CAM on neurons and an as yet unidentified CAM present on glial cells.

2002 ◽  
pp. 2568-2569 ◽  
Author(s):  
Christoph Löhbach ◽  
Udo Bakowsky ◽  
Carsten Kneuer ◽  
Dieter Jahn ◽  
Thomas Graeter ◽  
...  

2000 ◽  
Vol 191 (9) ◽  
pp. 1555-1567 ◽  
Author(s):  
Karen S. Taraszka ◽  
Jonathan M.G. Higgins ◽  
Kemin Tan ◽  
Didier A. Mandelbrot ◽  
Jia-huai Wang ◽  
...  

Cadherins are expressed in tissue-restricted patterns and typically mediate homophilic adhesion. Cadherins also mediate lymphocyte adhesion, providing the opportunity for lymphocyte attachment to parenchymal cells. The best characterized example of lymphocyte adhesion to a tissue-specific cell adhesion molecule, as opposed to a vascular endothelial adhesion molecule, is the interaction between integrin αEβ7 on intraepithelial lymphocytes and E-cadherin on epithelial cells. However, the molecular basis for an integrin–cadherin interaction is not well defined. Realization that the cadherin domain adopts a topology similar to the immunoglobulin (Ig) fold suggested that integrin recognition of E-cadherin might be similar to recognition of Ig superfamily ligands. Thus, we modeled domain 1 of human E-cadherin and studied the role of solvent-exposed loops that connect Ig-like core-forming β strands. Mutational analyses localized the integrin αEβ7 recognition site to the top of domain 1 at the face formed by the BC and FG loops, a site distinct from the region recognized in intercellular adhesion molecule (ICAM)-1, -2, and -3, mucosal addressin cell adhesion molecule 1 (MAdCAM-1), vascular cell adhesion molecule 1 (VCAM-1), and fibronectin by their integrin ligands. Moreover, the integrin αEβ7 binding site is distinct from the homophilic binding site on E-cadherin. These studies provide a conceptual basis for integrin–cadherin binding and extend the model that an Ig-like fold can serve as a scaffold for recognition.


2000 ◽  
Vol 82 ◽  
pp. 107
Author(s):  
Kazuhiro Nakamura ◽  
Toshiya Manabe ◽  
Takayoshi Mamiya ◽  
Hisashi Mori ◽  
Yuji Kiyama ◽  
...  

2012 ◽  
Vol 29 (11) ◽  
pp. 786-793 ◽  
Author(s):  
Hitoshi Kurio ◽  
Jae Man Lee ◽  
Takahiro Kusakabe ◽  
Hiroshi Iida

2003 ◽  
Vol 162 (6) ◽  
pp. 1149-1160 ◽  
Author(s):  
Sebastian Poliak ◽  
Daniela Salomon ◽  
Hadas Elhanany ◽  
Helena Sabanay ◽  
Brent Kiernan ◽  
...  

In myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2. These results demonstrate that Caspr2 and TAG-1 form a scaffold that is necessary to maintain K+ channels at the juxtaparanodal region, suggesting that axon–glia interactions mediated by these proteins allow myelinating glial cells to organize ion channels in the underlying axonal membrane.


2021 ◽  
Author(s):  
Alex Moore ◽  
Kavitha Chinnaiya ◽  
Dong Won Kim ◽  
Sarah Brown ◽  
Iain Stewart ◽  
...  

Hypothalamic tanycytes are neural stem and progenitor cells, but little is known of how they are regulated. Here we provide evidence that the cell adhesion molecule, NrCAM, regulates tanycytes in the adult niche. NrCAM is strongly expressed in adult mouse tanycytes. Immunohistochemical and in situ hybridization analysis revealed that NrCAM loss of function leads to both a reduced number of tanycytes and reduced expression of tanycyte-specific cell markers, along with a small reduction in tyrosine hydroxylase-positive arcuate neurons. Similar analyses of NrCAM mutants at E16 identify few changes in gene expression or cell composition, indicating that NrCAM regulates tanycytes, rather than early embryonic hypothalamic development. Neurosphere and organotypic assays support the idea that NrCAM governs cellular homeostasis. Single-cell RNA sequencing (scRNA-Seq) shows that tanycyte-specific genes, including a number that are implicated in thyroid hormone metabolism, show reduced expression in the mutant mouse. However, the mild tanycyte depletion and loss of markers observed in NrCAM-deficient mice were associated with only a subtle metabolic phenotype.


1983 ◽  
Vol 97 (1) ◽  
pp. 145-152 ◽  
Author(s):  
U Rutishauser ◽  
M Grumet ◽  
G M Edelman

Previous studies in this laboratory have described a cell surface glycoprotein, called neural cell adhesion molecule or N-CAM, that appears to be a ligand in the adhesion between neural membranes. N-CAM antigenic determinants were also shown to be present on embryonic muscle and an N-CAM-dependent adhesion was demonstrated between retinal cell membranes and muscle cells in short-term assays. The present studies indicate that these antigenic determinants are associated with the N-CAM polypeptide, and that rapid adhesion mediated by this molecule occurs between spinal cord membranes and muscle cells. Detailed examination of the effects of anti-(N-CAM) Fab' fragments in cultures of spinal cord with skeletal muscle showed that the Fab' fragments specifically block adhesion of spinal cord neurites and cells to myotubes. The Fab' did not affect binding of neurites to fibroblasts and collagen substrate, and did not alter myotube morphology. These results indicate that N-CAM adhesion is essential for the in vitro establishment of physical associations between nerve and muscle, and suggest that binding involving N-CAM may be an important early step in synaptogenesis.


1997 ◽  
Vol 34 (1) ◽  
pp. 61-73 ◽  
Author(s):  
C. S. Elangbam ◽  
C. W. Qualls ◽  
R. R. Dahlgren

Cell adhesion molecules are glycoproteins expressed on the cell surface and play an important role in inflammatory as well as neoplastic diseases. There are four main groups: the integrin family, the immunoglobulin superfamily, selectins, and cadherins. The integrin family has eight subfamilies, designated as β1, through β8. The most widely studied subfamilies are β1 (CD29, very late activation [VLA] members), β2 (leukocyte integrins such as CDlla/CD18, CDllb/CD18, CDllc/CD18, and αdβ2), β3 (CD61, eytoadhesions), and β7 (α4β7 and αEβ7). The immunoglobulin superfamily includes leukocyte function antigen-2 (LFA-2 or CD2), leukocyte function antigen-3 (LFA-3 or CD58), intercellular adhesion molecules (ICAMs), vascular adhesion molecule-1 (VCAM-1), platelet-endothelial cell adhesion molecule-1 (PE-CAM-1), and mucosal addressin cell adhesion molecule-1 (MAdCAM-1). The selectin family includes E-selectin (CD62E), P-selectin (CD62P), and L-selectin (CD62L). Cadherins are major cell-cell adhesion molecules and include epithelial (E), placental (P), and neural (N) subclasses. The binding sites (ligands/receptors) are different for each of these cell adhesion molecules (e.g., ICAM binds to CD11/CD18; VCAM-1 binds to VLA-4). The specific cell adhesion molecules and their ligands that may be involved in pathologic conditions and potential therapeutie strategies by modulating the expression of these molecules will be discussed.


1985 ◽  
Vol 101 (6) ◽  
pp. 2310-2315 ◽  
Author(s):  
O Nybroe ◽  
M Albrechtsen ◽  
J Dahlin ◽  
D Linnemann ◽  
J M Lyles ◽  
...  

The biosynthesis of the neural cell adhesion molecule (N-CAM) was studied in primary cultures of rat cerebral glial cells, cerebellar granule neurons, and skeletal muscle cells. The three cell types produced different N-CAM polypeptide patterns. Glial cells synthesized a 135,000 Mr polypeptide B and a 115,000 Mr polypeptide C, whereas neurons expressed a 200,000 Mr polypeptide A as well as polypeptide B. Skeletal muscle cells produced polypeptide B. The polypeptides synthesized by the three cell types were immunochemically identical. The membrane association of polypeptide C was investigated with methods that distinguish peripheral and integral membrane proteins. Polypeptide C was found to be a peripheral membrane protein, whereas polypeptides A and B were integral membrane proteins with cytoplasmic domains of approximately 50,000 and approximately 25,000 Mr, respectively. The affinity of the membrane binding of polypeptide C increased during postnatal development. The posttranslational modifications of polypeptide C were investigated in glial cell cultures, and it was found to be N-linked glycosylated and sulfated.


Sign in / Sign up

Export Citation Format

Share Document