scholarly journals Separation of precursor myogenic and chondrogenic cells in early limb bud mesenchyme by a monoclonal antibody.

1984 ◽  
Vol 99 (5) ◽  
pp. 1856-1866 ◽  
Author(s):  
J Sasse ◽  
A Horwitz ◽  
M Pacifici ◽  
H Holtzer

We have addressed the problem of the segregation of cell lineages during the development of cartilage and muscle in the chick limb bud. The following experiments demonstrate that early limb buds consist of at least two independent subpopulations of committed precursor cells--those in (a) the myogenic and (b) the chondrogenic lineage--which can be physically separated. Cells obtained from stage 20, 21, and 22 limb buds were cultured for 5 h in the presence of a monoclonal antibody that was originally isolated for its ability to detach preferentially myogenic cells from extracellular matrices. The detached limb bud cells were collected and replated in normal medium. Within 2 d nearly all of the replated cells had differentiated into myoblasts and myotubes; no chondroblasts differentiated in these cultures. In contrast, the original adherent population that remained after the antibody-induced detachment of the myogenic cells differentiated largely into cartilage and was devoid of muscle. Rearing the antibody-detached cells (i.e., replicating myogenic precursors and postmitotic myoblasts) in medium known to promote chondrogenesis did not induce these cells to chondrify. Conversely, rearing the attached precursor cells (i.e., chondrogenic precursors) in medium known to promote myogenesis did not induce these cells to undergo myogenesis. The definitive mononucleated myoblasts and multinucleated myotubes were identified by muscle-specific antibodies against light meromyosin or desmin, whereas the definitive chondroblasts were identified by a monoclonal antibody against the keratan sulfate chains of the cartilage-specific sulfated proteoglycan. These findings are interpreted as supporting the lineage hypothesis in which the differentiation program of a cell is determined by means of transit through compartments of a lineage.

Development ◽  
1988 ◽  
Vol 103 (3) ◽  
pp. 567-573
Author(s):  
D.M. Fekete ◽  
J.P. Brockes

Adult urodele amphibians can regenerate their limbs after amputation by a process that requires the presence of axons at the amputation plane. Paradoxically, if the limb develops in the near absence of nerves (the ‘aneurogenic’ limb) it can subsequently regenerate in a nerve-independent fashion. The growth zone (blastema) of regenerating limbs normally contains progenitor cells whose division is nerve-dependent. A monoclonal antibody that marks these nerve-dependent cells in the normal blastema does not stain the mesenchymal cells of developing limb buds and only stains the amputated limb bud when axons have reached the plane of amputation. This report shows that the blastemal cells of the regenerating aneurogenic limb also fail to react with the antibody in situ. These data suggest that the blastemal cells arising during normal regeneration have been altered by the nerve. This regulation may occur either at the time of amputation (when the antigen is expressed) or during development (when the limb is first innervated).


Development ◽  
1998 ◽  
Vol 125 (7) ◽  
pp. 1325-1335 ◽  
Author(s):  
M. Yamamoto ◽  
Y. Gotoh ◽  
K. Tamura ◽  
M. Tanaka ◽  
A. Kawakami ◽  
...  

The limb muscle precursor cells migrate from the somites and congregate into the dorsal and ventral muscle masses in the limb bud. Complex muscle patterns are formed by successive splitting of the muscle masses and subsequent growth and differentiation in a region-specific manner. Hox genes, known as key regulator genes of cartilage pattern formation in the limb bud, were found to be expressed in the limb muscle precursor cells. We found that HOXA-11 protein was expressed in the premyoblasts in the limb bud, but not in the somitic cells or migrating premyogenic cells in the trunk at stage 18. By stage 24, HOXA-11 expression began to decrease from the posterior halves of the muscle masses. HOXA-13 was expressed strongly in the myoblasts of the posterior part in the dorsal/ventral muscle masses and weakly in a few myoblasts of the anterior part of the dorsal muscle mass. Transplantation of the lateral plate of the presumptive wing bud to the flank induced migration of premyoblasts from somites to the graft. Under these conditions, HOXA-11 expression was induced in the migrating premyoblasts in the ectopic limb buds. Application of retinoic acid at the anterior margin of the limb bud causes duplication of the autopodal cartilage and transformation of the radius to the ulna, and at the same time induces duplication of the muscle pattern along the anteroposterior axis. Under these conditions, HOXA-13 was also induced in the anterior region of the ventral muscles in the zeugopod. These results suggest that Hoxa-11 and Hoxa-13 expression in the migrating premyoblasts is under the control of the limb mesenchyme and the polarizing signal(s). In addition, these results indicate that these Hox genes are involved in muscle patterning in the limb buds.


1998 ◽  
Vol 353 (1370) ◽  
pp. 925-933 ◽  
Author(s):  
Nicholas A. Wright

The main pathways of epithelial differentiation in the intestine, Paneth, mucous, endocrine and columnar cell lineages are well recognized. However, in abnormal circumstances, for example in mucosal ulceration, a cell lineage with features distinct from these emerges, which has often been dismissed in the past as ‘pyloric’ metaplasia, because of its morphological resemblance to the pyloric mucosa in the stomach. However, we can conclude that this cell lineage has a defined phenotype unique in gastrointestinal epithelia, has a histogenesis that resembles that of Brunner's glands, but acquires a proliferative organization similar to that of the gastric gland. It expresses several peptides of particular interest, including epidermal growth factor, the trefoil peptides TFF1, TFF2, TFF3, lysozyme and PSTI. The presence of this lineage also appears to cause altered gene expression in adjacent indigenous cell lineages. We propose that this cell lineage is induced in gastrointestinal stem cells as a result of chronic mucosal ulceration, and plays an important part in ulcer healing; it should therefore be added to the repertoire of gastrointestinal stem cells.


1986 ◽  
Vol 163 (4) ◽  
pp. 981-997 ◽  
Author(s):  
G Kraal ◽  
M Breel ◽  
M Janse ◽  
G Bruin

An mAb, NLDC-145, is described that specifically reacts with a group of nonlymphoid dendritic cells including Langerhans cells (LC), veiled cells (VC), and interdigitating cells (IDC). The antibody does not react with precursor cells in bone marrow and blood. Macrophages are not stained by the antibody, but a subpopulation of Ia+ peritoneal exudate cells is recognized. Possible relationships of the various nonlymphoid dendritic cell (NLDC) types are discussed.


Development ◽  
1984 ◽  
Vol 80 (1) ◽  
pp. 105-125
Author(s):  
Madeleine Gumpel-Pinot ◽  
D. A. Ede ◽  
O. P. Flint

Fragments of quail wing bud containing myogenic cells of somitic origin and fragments of quail sphlanchopleural tissue were introduced into the interior of the wing bud of fowl embryo hosts. No movement of graft into host tissue occurred in the control, but myogenic cells from the quail wing bud fragments underwent long migrations in an apical direction to become incorporated in the developing musculature of the host. When the apical ectodermal ridge (AER), together with some subridge mesenchyme, was removed at the time of grafting, no such cell migration occurred. The capacity of grafted myogenic cells to migrate in the presence of AER persists to H.H. stage 25, when myogenesis has begun, but premyogenic cells in the somites, which normally migrate out into the early limb bud, do not migrate when somite fragments are grafted into the wing bud. Coelomic grafts of apical and proximal wing fragments showed that apical sections of quail wing buds become invaded by myogenic cells of the host, but grafts from proximal wing bud regions do not.


Development ◽  
1997 ◽  
Vol 124 (20) ◽  
pp. 4133-4141 ◽  
Author(s):  
H. Kato ◽  
Y. Taniguchi ◽  
H. Kurooka ◽  
S. Minoguchi ◽  
T. Sakai ◽  
...  

Notch is involved in the cell fate determination of many cell lineages. The intracellular region (RAMIC) of Notch1 transactivates genes by interaction with a DNA binding protein RBP-J. We have compared the activities of mouse RAMIC and its derivatives in transactivation and differentiation suppression of myogenic precursor cells. RAMIC comprises two separate domains, IC for transactivation and RAM for RBP-J binding. Although the physical interaction of IC with RBP-J was much weaker than with RAM, transactivation activity of IC was shown to involve RBP-J by using an RBP-J null mutant cell line. IC showed differentiation suppression activity that was generally comparable to its transactivation activity. The RBP-J-VP16 fusion protein, which has strong transactivation activity, also suppressed myogenesis of C2C12. The RAM domain, which has no other activities than binding to RBP-J, synergistically stimulated transactivation activity of IC to the level of RAMIC. The RAM domain was proposed to compete with a putative co-repressor for binding to RBP-J because the RAM domain can also stimulate the activity of RBP-J-VP16. These results taken together, indicate that differentiation suppression of myogenic precursor cells by Notch signalling is due to transactivation of genes carrying RBP-J binding motifs.


2018 ◽  
Vol 76 (8) ◽  
Author(s):  
Kavindra V Singh ◽  
Kenneth L Pinkston ◽  
Peng Gao ◽  
Barrett R Harvey ◽  
Barbara E Murray

AbstractAce (Adhesin to collagen from Enterococcus faecalis) is a cell-wall anchored protein that is expressed conditionally and is important for virulence in a rat infective endocarditis (IE) model. Previously, we showed that rats immunized with the collagen binding domain of Ace (domain A), or administered anti-Ace domain A polyclonal antibody, were less susceptible to E. faecalis endocarditis than sham-immunized controls. In this work, we demonstrated that a sub nanomolar monoclonal antibody (mAb), anti-Ace mAb70, significantly diminished E. faecalis binding to ECM collagen IV in in vitro adherence assays and that, in the endocarditis model, anti-Ace mAb70 pre-treatment significantly reduced E. faecalis infection of aortic valves. The effectiveness of anti-Ace mAb against IE in the rat model suggests it might serve as a beneficial agent for passive protection against E. faecalis infections.


2006 ◽  
Vol 84 (2) ◽  
pp. 257-262 ◽  
Author(s):  
W Y Chang ◽  
F KhosrowShahian ◽  
M Wolanski ◽  
R Marshall ◽  
W McCormick ◽  
...  

In contrast to the pattern of limb emergence in mammals, chicks, and the newt N. viridescens, embryos such as Xenopus laevis and Eleutherodactylus coqui initiate pelvic limb buds before they develop pectoral ones. We studied the expression of Pitx1 in X. laevis and E. coqui to determine if this paired-like homeodomain transcription factor directs differentiation specifically of the hindlimb, or if it directs the second pair of limbs to form, namely the forelimbs. We also undertook to determine if embryonic expression patterns were recapitulated during the regeneration of an amputated limb bud. Pitx1 is expressed in hindlimbs in both X. laevis and E. coqui, and expression is similar in both developing and regenerating limb buds. Expression in hindlimbs is restricted to regions of proliferating mesenchyme.Key words: regeneration, Xenopus laevis, limb bud, Pitx1 protein, specification.


Sign in / Sign up

Export Citation Format

Share Document