vp16 fusion
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 0)

H-INDEX

9
(FIVE YEARS 0)

FEBS Letters ◽  
2014 ◽  
Vol 588 (20) ◽  
pp. 3665-3672 ◽  
Author(s):  
Sumire Fujiwara ◽  
Shingo Sakamoto ◽  
Keiko Kigoshi ◽  
Kaoru Suzuki ◽  
Masaru Ohme-Takagi

2014 ◽  
Vol 989-994 ◽  
pp. 1003-1006
Author(s):  
Chao Xie ◽  
William Donelan ◽  
Shun Lu ◽  
Li Jun Yang

It is well known that cellular differentiation is not a terminal process. Transdifferentiation is the conversion of one differentiated cell type to another. There are many examples of induced transdifferentiation between cell types by expression of ectopic transcription factors. Here we show that combined lentiviral expression of Pdx1 or Pdx1-VP16 fusion protein and Ngn3 can direct the transdifferentiation of hepatic cells into insulin producing cells. We showed that the Pdx1 or Pdx1-VP16 fusion protein and Ngn3 together synergistically increased transactivation for the insulin gene. This provides a useful model to study the transdifferentiation process.


2014 ◽  
Vol 31 (2) ◽  
pp. 123-132 ◽  
Author(s):  
Sumire Fujiwara ◽  
Keiko Kigoshi ◽  
Nobutaka Mitsuda ◽  
Kaoru Suzuki ◽  
Masaru Ohme-Takagi

2007 ◽  
Vol 53 (3) ◽  
pp. 587-594 ◽  
Author(s):  
Alexander P. Sorokin ◽  
Sean Walsh ◽  
Kim Baumann ◽  
John Nichols ◽  
Michael Bevan ◽  
...  

2006 ◽  
Vol 26 (10) ◽  
pp. 3902-3916 ◽  
Author(s):  
Gang G. Wang ◽  
Martina P. Pasillas ◽  
Mark P. Kamps

ABSTRACT Homeobox transcription factors Meis1 and Hoxa9 promote hematopoietic progenitor self-renewal and cooperate to cause acute myeloid leukemia (AML). While Hoxa9 alone blocks the differentiation of nonleukemogenic myeloid cell-committed progenitors, coexpression with Meis1 is required for the production of AML-initiating progenitors, which also transcribe a group of hematopoietic stem cell genes, including Cd34 and Flt3 (defined as Meis1-related leukemic signature genes). Here, we use dominant trans-activating (Vp16 fusion) or trans-repressing (engrailed fusion) forms of Meis1 to define its biochemical functions that contribute to leukemogenesis. Surprisingly, Vp16-Meis1 (but not engrailed-Meis1) functioned as an autonomous oncoprotein that mimicked combined activities of Meis1 plus Hoxa9, immortalizing early progenitors, inducing low-level expression of Meis1-related signature genes, and causing leukemia without coexpression of exogenous or endogenous Hox genes. Vp16-Meis1-mediated transformation required the Meis1 function of binding to Pbx and DNA but not its C-terminal domain (CTD). The absence of endogenous Hox gene expression in Vp16-Meis1-immortalized progenitors allowed us to investigate how Hox alters gene expression and cell biology in early hematopoietic progenitors. Strikingly, expression of Hoxa9 or Hoxa7 stimulated both leukemic aggressiveness and transcription of Meis1-related signature genes in Vp16-Meis1 progenitors. Interestingly, while the Hoxa9 N-terminal domain (NTD) is essential for cooperative transformation with wild-type Meis1, it was dispensable in Vp16-Meis1 progenitors. The fact that a dominant transactivation domain fused to Meis1 replaces the essential functions of both the Meis1 CTD and Hoxa9 NTD suggests that Meis-Pbx and Hox-Pbx (or Hox-Pbx-Meis) complexes co-occupy cellular promoters that drive leukemogenesis and that Meis1 CTD and Hox NTD cooperate in gene activation. Chromatin immunoprecipitation confirmed co-occupancy of Hoxa9 and Meis1 on the Flt3 promoter.


Diabetes ◽  
2005 ◽  
Vol 54 (4) ◽  
pp. 1009-1022 ◽  
Author(s):  
H. Kaneto ◽  
Y. Nakatani ◽  
T. Miyatsuka ◽  
T.-a. Matsuoka ◽  
M. Matsuhisa ◽  
...  

2005 ◽  
Vol 386 (2) ◽  
pp. 95-99 ◽  
Author(s):  
Alexander E.F. Smith ◽  
Farzin Farzaneh ◽  
Kevin G. Ford

AbstractIn order to demonstrate that an existing zinc-finger protein can be simply modified to enhance DNA binding and sequence discrimination in both episomal and chromatin contexts using existing zinc-finger DNA recognition code data, and without recourse to phage display and selection strategies, we have examined the consequences of a single zinc-finger extension to a synthetic three-zinc-finger VP16 fusion protein, on transcriptional activation from model target promoters harbouring the zinc-finger binding sequences. We report a nearly 10-fold enhanced transcriptional activation by the four-zinc-finger VP16 fusion protein relative to the progenitor three-finger VP16 protein in transient assays and a greater than five-fold enhancement in stable reporter-gene expression assays. A marked decrease in transcriptional activation was evident for the four-zinc-finger derivative from mutated regulatory regions compared to the progenitor protein, as a result of recognition site-size extension. This discriminatory effect was shown to be protein concentration-dependent. These observations suggest that four-zinc-finger proteins are stable functional motifs that can be a significant improvement over the progenitor three-zinc-finger protein, both in terms of specificity and the ability to target transcriptional function to promoters, and that single zinc-finger extension can therefore have a significant impact on DNA zinc-finger protein interactions. This is a simple route for modifying or enhancing the binding properties of existing synthetic zinc-finger-based transcription factors and may be particularly suited for the modification of endogenous zinc-finger transcription factors for promoter biasing applications.


Development ◽  
2001 ◽  
Vol 128 (8) ◽  
pp. 1335-1346 ◽  
Author(s):  
E. Lamar ◽  
C. Kintner ◽  
M. Goulding

The proneural basic helix-loop-helix proteins play a crucial role in promoting the differentiation of postmitotic neurons from neural precursors. However, recent evidence from flies and frogs indicates that additional factors act together with the proneural bHLH proteins to promote neurogenesis. We have identified a novel zinc finger protein, neuronal Kruppel-like protein (NKL), that positively regulates neurogenesis in vertebrates. NKL is expressed in Xenopus primary neurons and in differentiating neuronal precursors in the intermediate zone of the mouse and chick neural tube. In frog embryos, NKL is induced by overexpression of Neurogenin (Ngn), arguing that NKL is downstream of the proneural determination genes. Our results show that NKL and a NKL/VP16 fusion protein promote differentiation of neuronal precursors in the embryonic chick spinal cord. Following in ovo misexpression of NKL, neuroepithelial cells exit the cell cycle and differentiate into neurons. Similarly, NKL/VP16 induces extra primary neurons in frogs and upregulates expression of the neural differentiation factors, Xath3 and MyT1, as well as the neuronal markers, N-tubulin and elrC. Our findings establish NKL as a novel positive regulator of neuronal differentiation and provide further evidence that non-bHLH transcription factors function in the neuronal differentiation pathway activated by the vertebrate neuronal determination genes.


2000 ◽  
Vol 20 (12) ◽  
pp. 4199-4209 ◽  
Author(s):  
K. Amy Olson ◽  
Chris Nelson ◽  
Georgia Tai ◽  
Wesley Hung ◽  
Carl Yong ◽  
...  

ABSTRACT The yeast Saccharomyces cerevisiae transcription factor Ste12p is responsible for activating genes in response to MAP kinase cascades controlling mating and filamentous growth. Ste12p is negatively regulated by two inhibitor proteins, Dig1p (also called Rst1p) and Dig2p (also called Rst2p). The expression of a C-terminal Ste12p fragment (residues 216 to 688) [Ste12p(216–688)] from aGAL promoter causes FUS1 induction in a strain expressing wild-type STE12, suggesting that this region can cause the activation of endogenous Ste12p. Residues 262 to 594 are sufficient to cause STE12-dependent FUS1induction when overexpressed, and this region of Ste12p was found to bind Dig1p but not Dig2p in yeast extracts. In contrast, recombinant glutathione S-transferase–Dig2p binds to the Ste12p DNA-binding domain (DBD). Expression of DIG2, but notDIG1, from a GAL promoter inhibits transcriptional activation by an Ste12p DBD-VP16 fusion. Furthermore, disruption of dig1, but not dig2, causes elevated transcriptional activation by a LexA–Ste12p(216–688) fusion. Ste12p has multiple regions within the C terminus (flanking residue 474) that can promote multimerization in vitro, and we demonstrate that these interactions can contribute to the activation of endogenous Ste12p by overproduced C-terminal fragments. These results demonstrate that Dig1p and Dig2p do not function by redundant mechanisms but rather inhibit pheromone-responsive transcription through interactions with separate regions of Ste12p.


1999 ◽  
Vol 19 (1) ◽  
pp. 107-120 ◽  
Author(s):  
Yusuke Kamachi ◽  
Kathryn S. E. Cheah ◽  
Hisato Kondoh

ABSTRACT SOX proteins bind similar DNA motifs through their high-mobility-group (HMG) domains, but their action is highly specific with respect to target genes and cell type. We investigated the mechanism of target selection by comparing SOX1/2/3, which activate δ-crystallin minimal enhancer DC5, with SOX9, which activates Col2a1 minimal enhancer COL2C2. These enhancers depend on both the SOX binding site and the binding site of a putative partner factor. The DC5 site was equally bound and bent by the HMG domains of SOX1/2 and SOX9. The activation domains of these SOX proteins mapped at the distal portions of the C-terminal domains were not cell specific and were independent of the partner factor. Chimeric proteins produced between SOX1 and SOX9 showed that to activate the DC5 enhancer, the C-terminal domain must be that of SOX1, although the HMG domains were replaceable. The SOX2-VP16 fusion protein, in which the activation domain of SOX2 was replaced by that of VP16, activated the DC5 enhancer still in a partner factor-dependent manner. The results argue that the proximal portion of the C-terminal domain of SOX1/2 specifically interacts with the partner factor, and this interaction determines the specificity of the SOX1/2 action. Essentially the same results were obtained in the converse experiments in which COL2C2 activation by SOX9 was analyzed, except that specificity of SOX9-partner factor interaction also involved the SOX9 HMG domain. The highly selective SOX-partner factor interactions presumably stabilize the DNA binding of the SOX proteins and provide the mechanism for regulatory target selection.


Sign in / Sign up

Export Citation Format

Share Document