scholarly journals THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID

1962 ◽  
Vol 115 (4) ◽  
pp. 695-706 ◽  
Author(s):  
Virginia H. Donaldson ◽  
Oscar D. Ratnoff

The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen.

1964 ◽  
Vol 206 (6) ◽  
pp. 1255-1261 ◽  
Author(s):  
W. O. Reid ◽  
M. J. Silver

Fibrinolytic activity in human blood develops after the occurrence of viscous metamorphosis (VM) of platelets. Freshly drawn venous blood was held at room temperature until spontaneous VM of platelets occurred and then introduced into oxalate solution to prevent coagulation. As compared to the control (blood added to anticoagulant before VM) plasma of such samples exhibited increased fibrinolytic activity, detected by increased serial thrombin times. Clots from platelet-rich plasma exhibited an increase in the convergence of branches of the thrombelastograph and a decrease in weight after incubation for 24 hr or more. The increase in branch convergence was roughly proportional to the platelet count and was reduced or absent in thrombocytopenic blood or platelet-poor plasma. Dimethylsulfoxide blocked VM and prevented branch convergence (without preventing clot retraction). Epsilon-aminocaproic acid, an inhibitor of plasminogen activator, blocked or inhibited fibrinolytic activity without arresting VM. This evidence suggests that platelets contain significant proactivator or activator of plasminogen (or a factor which initiates their activity) which is released when VM occurs.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1151-1151
Author(s):  
Kenichi Ogiwara ◽  
Keiji Nogami ◽  
Katsumi Nishiya ◽  
Nobuyuki Tsujii ◽  
Midori Shima

Abstract Abstract 1151 Tranexamic acid (TA) and epsilon-aminocaproic acid (EACA) of lysine analogs have been clinically used as antifibrinolytic agents. These hemostatic mechanism is that TA/EACA bind to lysine-binding sites (LBS) of plasmin (Plm)/plasminogen (Plg) and competitively prevents Plm/Plg from binding to fibrin(ogen), resulting in inhibition of Plm-induced fibrin(ogen) degradation. TA/EACA cause a conformational change of (Glu-)Plg by LBS binding, however, resulting in paradoxical promotion of Plg activation by Plg activators (PA). It has been known in vitro that TA/EACA promote Plm generation simultaneously with inhibiting fibrinolysis, but clinical effects are poor understood. We have recently demonstrated that Plm possessed the procoagulant activity by catalytic proteolysis of factor (F)VIII, FV as well as FXII. In this study, we examined whether TA/EACA affected on the coagulation system through elevation of PA-induced Plm generation. In rotation thromboelastometry (ROTEM), the addition of urokinase (uPA, 80 IU/ml) to whole blood diminished the maximum clot firmness, indicative of hyperfibrinolysis. Furthermore, chromogenic assay for Plm-hydrolytic activity and calibrated automated thrombography (CAT) revealed that the addition of uPA elevated Plm activity and peak level of thrombin generation, respectively, in normal plasma. These findings supported that uPA promoted Plm generation, resulting in enhancement of fibrinolysis and procoagulant activity. Various concentrations of TA/EACA were added into whole blood or plasma prior to reactions with uPA (Fig.1). Fibrinolytic effects of uPA obtained in ROTEM were inhibited by TA/EACA dose-dependently (IC50; TA/EACA ∼0.5 micro M/∼1.5 micro M), similar to previous reports. However, uPA (20 IU/ml) -induced Plm activity obtained in Plm-hydrolytic activity increased in the presence of TA/EACA by ∼6-fold (EC50; TA/EACA ∼0.2 mM/∼1.5 mM), followed by decreasing at higher concentrations. Interestingly, the effect of TA/EACA on uPA-induced procoagulant activity observed as elevation of peak thrombin in CAT was biphasic pattern, similar to that on Plm activity in Plm-hydrolytic activity, i.e. peak thrombin was elevated by ∼2-fold by TA/EACA (EC50; TA/EACA ∼0.3 mM/∼1.5 mM), and after reaching maximum (TA/EACA ∼1 mM/∼10 mM), it decreased. Effects of TA/EACA on Plm generation and thrombin generation were both diminished by aprotinin, a potent Plm inhibitor, indicating that the procoagulant effect interacted closely with Plm generation. Since α2-antiplasmin (AP) neutralizes Plm in plasma, excess of Plm unlikely exerts the procoagulant activity. Since AP binds to Plm via LBS, however, TA/EACA prevents AP from binding to Plm. We confirmed that TA/EACA protected Plm from AP binding (IC50; TA/EACA ∼1 mM/∼10 mM) in purified systems. Furthermore, in the presence of uPA in plasma, FV and FVIII activities were immediately elevated, followed by slow decrease. FVII activity increased gradually by ∼1.5-fold. TA/EACA did not inhibit the effects of uPA on the coagulation factors, but rather accelerated. Taken together, we demonstrated a novel hemostatic mechanism that TA/EACA exerted the procoagulant activity by LBS binding of Plg/Plm; i.e. 1) promoting uPA-induced Plm generation, 2) inhibiting Plm binding to fibrin(ogen) (increasing free Plm), 3) inhibiting neutralization of free Plm by AP, 4) conserving Plm action to several coagulation factors (FV, FVII, FVIII). This mechanism might provide a clarification of clinical effects of TA/EACA including why some severe hemophilia A patients were successfully treated with EACA alone (Ghosh et al. Haemophilia. 2004;10:58). Disclosures: Ogiwara: Baxter Hemophilia Scientific Research and Education Fund in Japan 2009: Research Funding. Nogami:Bayer hemophilia award program 2009: Research Funding.


1981 ◽  
Vol 54 (1) ◽  
pp. 12-15 ◽  
Author(s):  
Kim J. Burchiel ◽  
Gottfried Schmer

✓ A rapid fluorometric assay technique has been utilized to assess the degree of fibrinolytic inhibition in 20 patients with ruptured intracranial aneurysms treated with epsilon-aminocaproic acid (EACA). This method quantitates the available plasminogen activity (APA) of plasma, and has proven to be a reliable means of monitoring antifibrinolytic therapy. Determination of the plasma APA also permits correlation of the level of fibrinolytic activity with putative complications of EACA therapy. Normal control plasma APA was 3.1 ± 0.7 CTA units/ml, but in patients with subarachnoid hemorrhage (SAH), pretreatment fibrinolytic activity was supranormal at 3.78 ± 0.88 CTA units/ml. During continuous intravenous administration of EACA (1.5 gm/hr) in patients with SAH, the plasma fibrinolytic activity was decreased to 0.9 ± 0.31 CTA units/ml. A case is described which exemplifies the use of this assay. In addition, an approach to monitoring antifibrinolytic therapy using the plasma APA is proposed.


1968 ◽  
Vol 19 (01/02) ◽  
pp. 136-144 ◽  
Author(s):  
D Ogston ◽  
C. M Ogston

Summary1. Protease I was found to have potent fibrinolytic activity in concentrations which exceeded the blood inhibitory capacity when tested on fibrin plates and artificial thrombi.2. Plasma inhibited the proteolytic activity of protease I to a greater extent than serum; serum had a greater inhibitory effect on protease I than on plasmin. Trasylol did not inhibit the proteolytic action of protease I.3. Protease I caused the slow formation of fibrin in plasma in concentrations which did not produce fibrinogenolysis; this effect was seen in Al(OH)3-adsorbed plasma, and was not inhibited by heparin. Protease I also shortened the recalcified plasma clotting time.4. The fibrinogenolytic action of protease I was more rapid than its fibrinolytic action both in the presence and absence of plasma inhibitors. No concentration of protease I lysed fibrin in plasma without prior destruction or conversion to fibrin of the surrounding plasma fibrinogen.5. It is concluded from these in vitro studies that protease I does not have the properties necessary for a satisfactory thrombolytic agent.


1964 ◽  
Vol 42 (1) ◽  
pp. 153-156 ◽  
Author(s):  
J. G. Ashwin ◽  
W. R. Coughlin

The plasma fibrinolytic activity in rats was measured by the euglobulin clot lysis time technique after injection of reserpine, serotonin, epsilon-aminocaproic acid, and UML-491. Fibrinolytic activity was increased by reserpine and serotonin, the extent depending on the dosage and route of administration. With serotonin, clot lysis time returned to normal after 6–12 hours. With reserpine, this occurred after 4 days. The antifibrinoiysin E-ACA was able to reduce fibrinolytic activity for more than 24 hours, whether given alone or with reserpine or serotonin. The antiserotonin UML-491 had a paradoxical fibrinolytic enhancing action that lasted for several hours alone, or given with serotonin it increased the fibrinolytic effect of serotonin.


1971 ◽  
Vol 25 (03) ◽  
pp. 481-498 ◽  
Author(s):  
Michelle Nijs ◽  
Christiane Brassinne ◽  
A Coune ◽  
H. J Tagnon

SummaryAn analysis of the proteolytic factors contained in human prostatic tissue was performed in vitro. Casein, fibrinogen and fibrin, non-radioactive and radioiodinated were used as substrates.A first factor, called direct proteolytic activity, capable of proteolyzing casein without prior activation, is described. It had no effect on fibrinogen or fibrin, was inhibited by epsilon aminocaproic acid, but not by the soybean trypsin inhibitor. This shows that this proteolytic activity was quite different from plasmin.A second factor, called plasminogen proactivator, was demonstrated on bovine plasminogen in the presence of streptokinase, the latter being unable to produce direct activation of bovine plasminogen. Activation of this system resulted in the transformation of plasminogen into plasmin, capable of digesting casein as well as fibrinogen and fibrin. Epsilon aminocaproic acid and the soybean trypsin inhibitor inhibited this system. The properties of this proactivator show that it probably does not result from the presence of small amounts of plasminogen in the prostate. Urokinase, a factor present in human urine, is able to activate this proactivator under certain conditions.The third factor, called plasminogen activator, was capable of activating directly human plasminogen into plasmin. It was not active on bovine plasminogen. Epsilon aminocaproic acid and the soybean trypsin inhibitor were effective inhibitors. Addition of large volumes of human prostatic extract to human plasminogen resulted in a paradoxical decrease of the proteolytic activity suggesting the possible existence in the prostate of an inhibitor of this third factor.Possible relationships between these factors and the clinical state of fibrinolysis observed in some cases of disseminated prostatic cancer are discussed.


1989 ◽  
Vol 62 (04) ◽  
pp. 1078-1082 ◽  
Author(s):  
Burt Adelman ◽  
Patricia Ouynn

SummaryThis report describes the binding of plasminogen to fibrinogen adsorbed onto polystyrene wells. Binding was determined by enzyme linked immunosorbent assay. Both glu- and lys-plasminogen bound to immobilized fibrinogen in a dose-dependent fashion. However, more lys- than glu-plasminogen bound when equal concentrations of either were added to immobilized fibrinogen. Plasminogen binding was inhibited by epsilon aminocaproic acid indicating that binding was mediated via lysine-binding regions of plasminogen. Soluble fibrinogen added in excess of immobilized fibrinogen did not compete for plasminogen binding but fibrinogen fragments produced by plasmin digestion of fibrinogen did. Treatment of immobilized fibrinogen with thrombin caused a small but significant (p <0.01) increase in plasminogen binding. These studies demonstrate that immobilized fibrinogen binds both glu- and lys-plasminogen and that binding is mediated via lysine-binding regions. These interactions may facilitate plasminogen binding to fibrinogen adsorbed on to surfaces and to cells such as platelets which bind fibrinogen.


Sign in / Sign up

Export Citation Format

Share Document