scholarly journals SURFACE MARKERS ON HUMAN B AND T LYMPHOCYTES

1973 ◽  
Vol 138 (6) ◽  
pp. 1365-1378 ◽  
Author(s):  
Mikael Jondal ◽  
George Klein

Human peripheral lymphocytes were investigated for receptors binding Epstein-Barr virus (EBV) because of the regular association of this virus with infectious mononucleosis and Burkitt's lymphoma. This was done by a cytoadherence technique where virus-producing cells, displaying fresh viral determinants in their cytoplasmatic membrane, were mixed with lymphocytes. Unfractionated lymphocytes were found to adhere to these cells in contrast to column-purified T lymphocytes. The specificity of the binding was confirmed by blocking experiments that showed that sera containing high titers of antibodies directed against the virus could partially inhibit the adherence in contrast to low-titer sera. It is concluded that B lymphocytes, in contrast to T lymphocytes, have receptors for EBV. In a second line of experiments it was found that established human lymphoblastoid lines that carry the EBV genome had receptors characteristic for B lymphocytes and did not form T-lymphocyte rosettes. In contrast, a line of known T-lymphocyte origin that did not carry the EBV genome had receptors characteristic for T lymphocytes. EBV-transformed simian lymphoblastoid lines had surface markers indicating a B-lymphocyte origin in contrast to HVS-transformed simian lines that lacked surface immunoglobulin but carried receptors for sheep red blood cells.

Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517 ◽  
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

Abstract A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


Blood ◽  
1981 ◽  
Vol 57 (3) ◽  
pp. 510-517
Author(s):  
RT Schooley ◽  
BF Haynes ◽  
J Grouse ◽  
C Payling-Wright ◽  
AS Fauci ◽  
...  

A system of 3H-thymidine incorporation by lymphocytes in culture for 3 wk has been utilized for quantitative assessment of the ability of T lymphocytes to inhibit outgrowth of autologous Epstein-Barr virus (EBV) transformed B lymphocytes. Lymphocytes from EBV-seronegative individuals lack the ability to suppress outgrowth of autologous EBV- transformed B lymphocytes. This capability appears during the course of primary EBV-induced infectious mononucleases (IM) as the atypical lymphocytosis is subsiding and persists for years after recovery from primary EBV infection. The ability of T lymphocytes from EBV- seropositive subjects or convalescent IM patients to inhibit B- lymphocyte outgrowth is not HLA restricted. Thus, T lymphocytes capable of inhibition of in vitro EBV-induced B-cell outgrowth emerge during the acute stage of IM and may represent an important control mechanism of EBV-induced B-lymphocyte proliferation in vivo. The system provides a highly sensitive quantitative means for in vitro assessment of cell- mediated immunity to EBV.


1981 ◽  
Vol 153 (4) ◽  
pp. 871-882 ◽  
Author(s):  
H Y Tse ◽  
J J Mond ◽  
W E Paul

For the purpose of examining more closely the interaction between T and B lymphocytes, we have developed an in vitro T lymphocyte-dependent B lymphocyte proliferation assay. Proliferation of B lymphocytes in response to antigen was found to depend on the presence of primed T lymphocytes; the B lymphocytes could be derived from nonprimed animals. It appears that these B cells were nonspecifically recruited to proliferate. This nonspecific recruitment, however, was found to be Ir-gene restricted in that B lymphocytes from B10.S mice, which are genetic nonresponders to the polymer Glu60-Ala30-Tyr10 (GAT), could not be stimulated by GAT-primed (responder X nonresponder) F1 T cells. The apparent lack of antigen specificity in the face of Ir gene-restricted T-B interaction may have important implications in our understanding of the recognition unit(s) on T lymphocytes.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1733-1733
Author(s):  
Dianne Pulte ◽  
Marinus Johan Broekman ◽  
Joan Drosopoulos ◽  
Kim E. Olson ◽  
Naziba Islam ◽  
...  

Abstract CD39/NTPDase-1 is an ecto-ATP/ADPase expressed on leukocytes and endothelial cells. CD39 is the main control system for blood fluidity. CD39 on lymphocytes was first reported in 1991 by Kansas et al. However, studies of CD39 expression and activity on leukocytes have not been done. We characterized levels of CD39 expression and enzymatic activity on neutrophils (PMN), lymphocytes and lymphocyte subsets. Since inflammatory responses occur in arterial vascular disease, we also examined expression of CD39 on naive versus activated and memory lymphocytes. Lymphocytes were isolated by a histopaque procedure, and PMN by dextran gradient. B-lymphocytes were isolated using the RosetteSep B-cell kit. All cell types were confirmed to have purities of >90%. CD39 activity was assayed via our radio-thin-layer chromatographic system. CD39 expression was measured on leukocytes via FACS. PMN, monocytes, and lymphocytes were identified by their forward and side-scatter characteristics. Subsets of lymphocytes were examined via double staining for CD39 and antibodies against specific sub-types. CD39 localized to the surface of greater than 95% of neutrophils, monocytes, and B-lymphocytes. It was also present on a minority (~8%) of T-lymphocytes with no difference in frequency of expression between CD4+ and CD8+ cells. Geometric mean (GM) expression of CD39 per cell was greatest in B-lymphocytes and monocytes, lower in CD4+ cells, and lowest in CD8+ cells and PMN. Interestingly, incubation of T- lymphocytes with PHA up-regulated CD39 in CD8+ cells both in terms of number of cells expressing and GM, with expression rising to 65%. The GM increased 4-fold after 6d of stimulation with PHA. A similar but less dramatic increase was seen with LPS. This is the first time we have accomplished up-regulation of CD39 expression and enzymatic activity. Radio-TLC measurement of nucleotidase activity showed B-lymphocytes>PMN>T-lymphocytes. B-lymphocyte ADPase and ATPase activities (in pmol/min/50K cells) were 75 and 43, respectively. PMN displayed 39 (ADPase) and 22 (ATPase), while T-lymphocytes had enzymatic activity of 16 and 11.5, respectively. ADPase:ATPase ratios were similar for B-lymphocytes and PMN, but lower for T-lymphocytes (1.8 for B-lymphocytes and PMN, vs 1.45 for T-lymphocytes, p=0.03). Lymphocytes stimulated with PHA demonstrated an increase in enzyme activity of 10–20X baseline that peaked at 7–10d. ADPase:ATPase ratio was unchanged. FACS measurement showed that CD39+ lymphocytes were more often activated than CD39− lymphocytes in both CD3+ (p=0.06) and CD4+ (p=0.02) subgroups. Preliminary experiments indicated that >85% of CD39+ T-lymphocytes are CD45RO+. Importantly, this suggests that CD39 is expressed primarily on activated or memory cells in the T-lymphocyte population. Thus, CD39 is expressed on a broad variety of leukocytes. T-lymphocyte expression can be induced by stimulation with mitogens. Moreover, CD39 is present primarily on CD45RO+ T-lymphocytes. We conclude that CD39 expression can be induced by activation of the immune system. The up-regulation of CD39 on activated and memory T-lymphocytes may be a compensatory mechanism for protection from thrombosis as a consequence of inflammation. It may serve as a mechanism for metabolizing extracellular ATP and therefore decreasing the inflammatory stimulus. Abnormalities in CD39 may result in decreased nucleotidase activity and increased vulnerability to thrombosis as a consequence of inflammation.


2002 ◽  
Vol 76 (20) ◽  
pp. 10427-10436 ◽  
Author(s):  
Kara L. Carter ◽  
Ellen Cahir-McFarland ◽  
Elliott Kieff

ABSTRACT To elucidate the mechanisms by which Epstein-Barr virus (EBV) latency III gene expression transforms primary B lymphocytes to lymphoblastoid cell lines (LCLs), the associated alterations in cell gene expression were assessed by using 4,146 cellular cDNAs arrayed on nitrocellulose filters and real-time reverse transcription-PCR (RT-PCR). A total of 1,405 of the 4,146 cDNAs were detected using cDNA probes from poly(A)+ RNA of IB4 LCLs, a non-EBV-infected Burkitt's lymphoma (BL) cell line, BL41, or EBV latency III-converted BL41 cells (BL41EBV). Thirty-eight RNAs were consistently twofold more abundant in the IB4 LCL and BL41EBV than in BL41 by microarray analysis. Ten of these are known to be EBV induced. A total of 23 of 28 newly identified EBV-induced genes were confirmed by real-time RT-PCR. In addition, nine newly identified genes and CD10 were EBV repressed. These EBV-regulated genes encode proteins involved in signal transduction, transcription, protein biosynthesis and degradation, and cell motility, shape, or adhesion. Seven of seven newly identified EBV-induced RNAs were more abundant in newly established LCLs than in resting B lymphocytes. Surveys of eight promoters of newly identified genes implicate NF-κB or PU.1 as potentially important mediators of EBV-induced effects through LMP1 or EBNA2, respectively. Thus, examination of the transcriptional effects of EBV infection can elucidate the molecular mechanisms by which EBV latency III alters B lymphocytes.


PLoS ONE ◽  
2017 ◽  
Vol 12 (5) ◽  
pp. e0177275 ◽  
Author(s):  
Farzaneh Assadian ◽  
Wael Kamel ◽  
Göran Laurell ◽  
Catharina Svensson ◽  
Tanel Punga ◽  
...  

1999 ◽  
Vol 73 (12) ◽  
pp. 10525-10530 ◽  
Author(s):  
Kenneth M. Kaye ◽  
Kenneth M. Izumi ◽  
Hong Li ◽  
Eric Johannsen ◽  
David Davidson ◽  
...  

ABSTRACT An Epstein-Barr virus (EBV) recombinant (MS231) that expresses the first 231 amino acids (aa) of LMP1 and is truncated 155 aa before the carboxyl terminus transformed resting B lymphocytes into lymphoblastoid cell lines (LCLs) only when the infected cells were grown on fibroblast feeder cells (K. M. Kaye et al., J. Virol. 69:675–683, 1995). Higher-titer MS231 virus has now been compared to wild-type (WT) EBV recombinants for the ability to cause resting primary B-lymphocyte transformation. Unexpectedly, MS231 is as potent as WT EBV recombinants in causing infected B lymphocytes to proliferate in culture for up to 5 weeks. When more than one transforming event is initiated in a microwell, the MS231 recombinant supports efficient long-term LCL outgrowth and fibroblast feeder cells are not required. However, with limited virus input, MS231-infected cells differed in their growth from WT virus-infected cells as early as 6 weeks after infection. In contrast to WT virus-infected cells, most MS231-infected cells could not be grown into long-term LCLs. Thus, the LMP1 amino-terminal 231 aa are sufficient for initial growth transformation but the carboxyl-terminal 155 aa are necessary for efficient long-term outgrowth. Despite the absence of the carboxyl-terminal 155 aa, MS231- and WT-transformed LCLs are similar in latent EBV gene expression, in ICAM-1 and CD23 expression, and in NF-κB and c-jun N-terminal kinase activation. MS231 recombinant-infected LCLs, however, require 16- to 64-fold higher cell density than WT-infected LCLs for regrowth after limiting dilution. These data indicate that the LMP1 carboxyl-terminal 155 aa are important for growth at lower cell density and appear to reduce dependence on paracrine growth factors.


2018 ◽  
Author(s):  
Rajesh Ponnusamy ◽  
Ritika Khatri ◽  
Paulo B. Correia ◽  
Erika Mancini ◽  
Paul J. Farrell ◽  
...  

AbstractNatural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transformingin vitrodue to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYNDefficiently and that the type 2 EBNA2TADbound an additional BS69CC-MYNDmolecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYNDdimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance. Our data indicate that increased association with BS69 restricts growth promotion by EBNA2 and may contribute to reduced B-cell transformation by type 2 EBV.Author summaryEpstein-Barr virus (EBV) drives the development of many human cancers worldwide including specific types of lymphoma and carcinoma. EBV infects B lymphocytes and immortalises them, thus contributing to lymphoma development. The virus promotes B lymphocyte growth and survival by altering the level at which hundreds of genes are expressed. The EBV protein EBNA2 is known to activate many growth-promoting genes. Natural variation in the sequence of EBNA2 defines the two main EBV strains: type 1 and type 2. Type 2 strains immortalise B lymphocytes less efficiency and activate some growth genes poorly, although the mechanism of this difference is unclear. We now show that sequence variation in type 2 EBNA2 creates a third site of interaction for the repressor protein (BS69, ZMYND11). We have characterised the complex formed between type 2 EBNA2 and BS69 and show that three dimers of BS69 form a bridged complex with two molecules of type 2 EBNA2. We demonstrate that mutation of the additional BS69 interaction site in type 2 EBNA2 improves its growth-promoting function. Our results therefore provide a molecular explanation for the different B lymphocyte growth promoting activities of type 1 and type 2 EBV. This aids our understanding of immortalisation by EBV.


Sign in / Sign up

Export Citation Format

Share Document