scholarly journals Joint recognition by cytotoxic T cells of inactivated Sendai virus and products of the major histocompatibility complex.

1977 ◽  
Vol 145 (3) ◽  
pp. 523-539 ◽  
Author(s):  
J W Schrader ◽  
G M Edelman

Cytotoxic T cells specific for Sendai virus were generated by culturing murine spleen cells in vitro together with UV-inactivated Sendai virus. In vivo immunization of donor mice with UV-inactivated Sendai virus resulted in an in vitro secondary response of increased magnitude. Cytotoxic activity was demonstrated in a short-term 51Cr-release assay, using syngeneic tumor cells which had been coated with inactivated Sendai virus by incubation at 4 degrees C for 30 min. The lysis of Sendai virus-coated target cells was restricted by the H-2 haplotype of the target cells, suggesting that the H-2 genes of the target cell contributed to the specificity of the lysis. Kinetic experiments showed that susceptibility to lysis by cytotoxic T cells specific for Sendai virus appeared within 30 min after coating target cells with inactivated virus. Furthermore, there was no detectable synthesis of new proteins in cells treated with UV-inactivated Sendai virus. For these reasons, we suggest that neither viral replication nor the synthesis of new proteins are necessary for the production of the antigen recognized by cytotoxic cells specific for Sendai virus. We infer that the virus-specific component on the target cells is probably a preformed virion antigen adsorbed onto or integrated into the cell membrane. These results imply that, if the cytotoxic T cell recognizes a single antigenic determinant specified both by viral and H-2 genes, this determinant is formed by the physical association of H-2 and Sendai virus antigens rather than by their alteration during the processes of synthesis.

1977 ◽  
Vol 146 (2) ◽  
pp. 600-605 ◽  
Author(s):  
J Forman

Spleen cells sensitized against trinitrophenyl (TNP)-modified stimulator cells displayed a cytotoxic effect against syngeneic TNP-modified but not dinitrophenyl (DNP)-modified target cells. The same finding was observed in the opposite direction; that is, effector cells sensitized against DNP-modified stimulator cells did not cross kill TNP-modified targets. The specificity of the anti-TNP effector cells was confirmed in a cold target competition assay. Presensitization in vivo with hapten-modified cells followed by rechallenge and testing in vitro did not alter the specificity of the response between the haptens. These data indicate that the receptor(s) on the cytotoxic T cell can distinguish between two closely related haptenic molecules.


1984 ◽  
Vol 160 (2) ◽  
pp. 552-563 ◽  
Author(s):  
A R Townsend ◽  
J J Skehel

Using genetically typed recombinant influenza A viruses that differ only in their genes for nucleoprotein, we have demonstrated that repeated stimulation in vitro of C57BL/6 spleen cells primed in vivo with E61-13-H17 (H3N2) virus results in the selection of a population of cytotoxic T lymphocytes (CTL) whose recognition of infected target cells maps to the gene for nucleoprotein of the 1968 virus. Influenza A viruses isolated between 1934 and 1979 fall into two groups defined by their ability to sensitize target cells for lysis by these CTL: 1934-1943 form one group (A/PR/8/34 related) and 1946-1979 form the second group (A/HK/8/68 related). These findings complement and extend our previous results with an isolated CTL clone with specificity for the 1934 nucleoprotein (27, 28). It is also shown that the same spleen cells derived from mice primed with E61-13-H17 virus in vivo, but maintained in identical conditions by stimulation with X31 virus (which differs from the former only in the origin of its gene for NP) in vitro, results in the selection of CTL that cross-react on target cells infected with A/PR/8/1934 (H1N1) or A/Aichi/1968 (H3N2). These results show that the influenza A virus gene for NP can play a role in selecting CTL with different specificities and implicate the NP molecule as a candidate for a target structure recognized by both subtype-directed and cross-reactive influenza A-specific cytotoxic T cells.


1978 ◽  
Vol 147 (4) ◽  
pp. 1236-1252 ◽  
Author(s):  
T J Braciale ◽  
K L Yap

This report examines the requirement for infectious virus in the induction of influenza virus-specific cytotoxic T cells. Infectious influenza virus was found to be highly efficient at generating both primary and secondary cytotoxic T-cell response in vivo. Inactivated influenza virus however, failed to stimulate a detectable cytotoxic T-cell response in vivo even at immunizing doses 10(5)-10(6)-fold higher than the minimum stimulatory dose of infectious virus. Likewise inactivated virus failed to sensitize target cells for T cell-mediated lysis in vitro but could stimulate a specific cytotoxic response from primed cells in vitro. Possible requirements for the induction of virus-specific cytotoxic T-cell responses are discussed in light of these observations and those of other investigators.


1979 ◽  
Vol 149 (4) ◽  
pp. 856-869 ◽  
Author(s):  
T J Braciale

Purified type A influenza viral hemagglutinin stimulates an in vitro cell-mediated cytotoxic cell response that exhibits a high degree of specificity for the immunizing hemagglutinin. The response magnitude is proportional to the hemagglutinin dose used for stimulation. The lytic activity of the effector cells is H-2 restricted. Analysis of the specificity of the response indicated that these cytotoxic T cells readily distinguish target cells expressing serologically unrelated hemagglutinin from target cells bearing hemagglutinins serologically related to the stimulating hemagglutinin. Further analysis of the fine specificity of cytotoxic T-cell recognition with serologically cross-reactive type A influenza hemagglutinins revealed a hierarchy of cross-reactivity among these hemagglutinins that was the converse of the serologic hierarchy. These results are discussed in terms of possible differences and similarities in the specificity repertoire of cytotoxic T cells and antibodies. Possible implications of these findings from the standpoint of cytotoxic T-cell induction are also discussed.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3052-3052
Author(s):  
A. Dutour ◽  
D. Lee ◽  
S. Napier ◽  
E. Yvon ◽  
H. Finney ◽  
...  

3052 Background: EBV-specific cytotoxic T cells (EBV-CTLs) expand and have long-term activity in vivo due to the sustained costimulation provided by the EBV-infected cells produced by this persistent virus. We exploited this phenomenon and redirected EBV-CTLs against CD33, a surface protein expressed on the malignant blasts of acute myeloid leukemia (AML) cells. Methods: EBV-CTLs generated from six EBV-seropositive donors were transduced using a retroviral vector encoding CD33 specific chimeric receptor (cR). We evaluated whether the high and sustained activity shown against native EBV+ target cells can be extended to the CD33+ EBV- targets of the chimeric receptor and whether the addition of CD28 signaling domain improved the receptor activity. Results: cRCD33-EBV-CTL maintained killed EBV-LCL and CD33+ targets (specific lysis respectively of 30% and 35% at E:T ratio 25:1). They produced Th-1, Th-2 and Tc cytokines on exposure to CD33+ targets. Addition of the CD28 intracellular domain did not increase cytotoxicity to CD33+ targets. Preincubation of CD33+ cells with the CD33-blocking MoAb resulted in up to 40% inhibition of lysis and up to 60% inhibition of cytokine release by cRCD33-EBV-CTLs confirming the specificity of the TCR interactions with CD33. NOD-SCID mice bearing a human CD33+ AML were injected with EBV-CTLs ×4 weekly starting 5 days after tumor inoculation. Significant tumor reduction was only observed in mice treated with the cRCD33-EBV-CTLs (p<0.05). Immunohistologic analysis showed the presence of a majority of CD8+ human T cells in the tumors of treated mice. Incorporation of the CD28 endodomain resulted in less tumor-infiltrating T cells in mice treated with cRCD33CD28-EBV-CTLs. There was no significant difference in the chemokines receptor expression on cRCD33CD28-EBV-CTLs but their rate of apoptosis was 16 % higher (p<0.05) than the one of cRCD33-EBV-CTLs. Conclusions: EBV- CTL expressing the CD33 chimeric receptor are functional in vitro and in vivo in mice. CD28 signaling may have a deleterious role for the activity of chimeric receptors in vivo. No significant financial relationships to disclose.


1977 ◽  
Vol 145 (3) ◽  
pp. 644-651 ◽  
Author(s):  
R M Zinkernagel ◽  
A Althage

Virus-immune cytotoxic T cells can inhibit effectively growth of vaccinia virus in acutely infected target cells in vitro by destroying infected target cells before infectious virus progeny is assembled. Together with the fact that virus-specific T cells are demonstrable after 3 days, very early during infection, and with strong circumstantial evidence from adoptive transfer models in vivo, these data suggest that in some virus infections T cells may in fact act cytolytically in vivo to prevent virus growth and spread and be an important early antiviral effector mechanism.


1976 ◽  
Vol 144 (4) ◽  
pp. 933-945 ◽  
Author(s):  
R M Zinkernagel

During infection with lymphocytic choriomeningitis or vaccinia virus, F1 irradiation chimeras reconstituted with bone marrow cells from or both parents generate cytotoxic T cells which can lyse targets across the H-2 barrier. However, activity of chimera T cells is H-2 restricted as shown by cold target competition experiments and selective restimulation of a secondary response in vitro; T cells of H-2k specificity which lyse tolerated infected H-2d target cells do not lyse infected H-2k or unrelated target cells and vice versa. Therefore, H-2 restriction of virus-specific cytotoxic T cells probably does not reflect need for like-like self-interactions for lysis to occur. The specificity of virus immune T cells is thus determined by the H-2K and H-2D specificities present in the infected animal and which are probably recognized unidirectionally by T cells. The results are compatible with the idea the T cells are specific for "altered alloantigen", i.e., a complex of cell surface marker and viral antigen. Alternatively, explained with a dual recognition model, T cells may possess two independently, clonally expressed receptors, a self-recognizer which is expressed for one of the syngeneic or tolerated allogeneic K or D "self" markers, and an immunologically specific receptor for viral antigen.


1980 ◽  
Vol 151 (1) ◽  
pp. 133-143 ◽  
Author(s):  
J J Jandinski ◽  
J Li ◽  
P J Wettstein ◽  
J A Frelinger ◽  
D W Scott

Trinitrophenylated syngeneic spleen cells (TNP-SC) are potent tolerogens of the anti-TNP plaque-forming cell (PFC) response in vivo and in vitro. This unresponsive state requires T cells for both its induction and maintenance. Because H-2K/D-restricted cytotoxic T cells are also induced by exposure to TNP-SC, we determined the role(s) of histocompatibility antigens (K, I, and D) in the suppression of the PFC response by TNP-SC. We treated syngeneic TNP-modified stimulator cells with antiserum directed at K-, I-, or D-region determinants and found that blocking of H-2K or D antigens on TNP-SC transformed these tolerogens into immunogens capable of eliciting an anti-TNP PFC response in the absence of extrinsic immunogens like TNP-polymerized flagellin. In H-2k or H-2a(k/d) mice, only H-2Kk needs to be blocked on the stimulator cells, whereas H-2K or D recognition was apparent in B10.A(4R) mice. These observations indicate that suppression of the PFC response by TNP-SC shows the same restriction in recognition as does the cytotoxic T-cell response. Furthermore, our results suggest that TNP-I-A is recognized by the helper cells in this system as the intrinsic antigen. When both TNP-K and TNP-I-A are present and available on the same stimulator cell, suppression (via modified K recognition) is dominant over help.


1978 ◽  
Vol 148 (1) ◽  
pp. 276-287 ◽  
Author(s):  
K Sugamura ◽  
K Shimizu ◽  
FH Back

Mice inoculated with ultraviolet light-inactivated Sendai virus mount a cell- mediated immune response to the virus. Cytotoxic T cells specific for Sendai virus can be obtained by in vitro secondary stimulation of primed spleen cells with syngeneic stimulator cells coated with UV-inactivated Sendai virus. Neither in vivo nor in vitro stimulation alone is sufficient to generate specific cytotoxic T cells. Sharing of the H-2 haplotype between cytotoxic T cells and target cells is required for the Sendai virus-specific lysis to occur. The fusion (F) glycoprotein of Sendai virus has been implicated in target antigen formation (20). Ethanol treatment of Sendai virus causes complete inactivation of the cell-fusion and hemolytic activities of the envelope, but does not affect the antigenicity of the F glycoprotein; furthermore, hemagglutinin and neuraminidase activities of the envelope HANA glycoprotein are also left intact after ethanol treatment. Target cells can be prepared by coating them with various numbers of UV-inactivated Sendai virus that have been treated with ethanol or, as a control, phosphate-buffered saline (PBS). The amount of virus adsorbed to target cells during the cytotoxicity reaction time using either ethanol-treated or untreated (PBS "treated") virions is essentially identical, but target cells coated with ethanol-treated Sendai virus fail to serve as targets for cytotoxic T cells. These results indicate that fusion activity of the Sendai virus envelope is essential to the formation of the target antigen and that virus adsorption to cell surfaces without fusion of the envelope with cell membranes is not sufficient to allow killing by virus-specific cytotoxic T cells.


2019 ◽  
Author(s):  
Eliza Mari Kwesi-Maliepaard ◽  
Muhammad Assad Aslam ◽  
Mir Farshid Alemdehy ◽  
Teun van den Brand ◽  
Chelsea McLean ◽  
...  

AbstractCytotoxic T-cell differentiation is guided by epigenome adaptations but how epigenetic mechanisms control lymphocyte development has not been well defined. Here we show that the histone methyltransferase DOT1L, which marks the nucleosome core on active genes, safeguards normal differentiation of CD8+ T cells. T-cell specific ablation of Dot1L resulted in loss of naïve CD8+ T cells and premature differentiation towards a memory-like state, independent of antigen exposure and in a cell-intrinsic manner. Without DOT1L, the memory-like CD8+ cells fail to acquire full effector functions in vitro and in vivo. Mechanistically, DOT1L controlled T-cell differentiation and function by ensuring normal T-cell receptor density and signaling, and by maintaining epigenetic identity, in part by indirectly supporting the repression of developmentally-regulated genes. Through our study DOT1L is emerging as a central player in physiology of CD8+ T cells, acting as a barrier to prevent premature differentiation and supporting the licensing of the full effector potential of cytotoxic T cells.


Sign in / Sign up

Export Citation Format

Share Document