scholarly journals Structural evidence for distinct IgG subclass-specific Fc receptors on mouse peritoneal macrophages

1980 ◽  
Vol 152 (5) ◽  
pp. 1147-1161 ◽  
Author(s):  
BC Lane ◽  
J Kan-Mitchell ◽  
MS Mitchell ◽  
SM Cooper

Membrane proteins which selectively bind to the Fc portion of IgG were identified in the Nonidet P-40 extracts of radiolabeled thioglycollate- elicited mouse peritoneal macrophages. Affinity columns of various IgG preparations coupled to Sepharose 4B were used to absorb the Fc-binding proteins. Analysis of the acetic acid or sodium dodecyl sulfate (SDS) eluates from aggregated human IgG or antigen-complexed rabbit IgG columns revealed two Fc(gamma)/-specific proteins with apparent 67,000 and 52,000 mol wt. These proteins were not detected in acid or SDS eluates from F(ab')(2) columns or in eluates from IgG column, over which were passed lysates of Fc receptor-negative cells. With the use of affinity columns that contained aggregated mouse myeloma proteins of different IgG subclasses, we found that the 67,000-dahon protein selectively binds to IgG2a, whereas the 52,000-dalton protein binds to IgG1 and IgG2b. Neither protein was found in SDS eluates from IgG3 columns. Trypsin treatment of the macrophages before detergent lysis removed the 67,000-dalton protein, although it leaves intact the 52,000-dalton protein. These results provide structural confirmation for the existence of separate Fc receptors on mouse macrophages and indicate that the two Fc-binding proteins identified in this study represent all or part of the trypsin- sensitive Fc receptor which binds IgG2a and the trypsin-resistant Fc receptor which binds IgG2b and IgG1.

1977 ◽  
Vol 145 (4) ◽  
pp. 931-945 ◽  
Author(s):  
J C Unkeless

A stable variant of a clone of the P388D1 macrophage line was isolated using four cycles of treatment with mouse IgG2a-rabbit anti-kappa complexes and rabbit complement. The variant had the same Ka and about the same number of sites per cell for IgG2a as the parent line. However, the variant had 10% as many binding sites for rabbit IgG in soluble antigen-antibody complexes, and the affinity of binding was threefold higher. This change in binding of complexes to cells of a cloned line without alternation of IgG2a binding provides evidence for the presence of two distinct Fc receptors. The two receptors could also be distiguished on the P388D1 line and on thioglycollate-induced mouse peritoneal macrophages by differential sensitivity to trypsinization. The receptors that bind monomeric IgG2a, sheep erythrocytes (SRBC) covalently bound with IgG2a or rabbit IgG using glutaraldehyde, and Sephadex beads coupled with IgG2a or rabbit IgG using cyanogen bromide activitation, is sensitive to trypsinization. The receptor that binds soluble rabbit antibody-antigen complexes, trinitrophenyl-SRBC and dinitrophenyl(DNP)-bovine serum albumin Sephadex beads coated with rabbit anti-DNP IgG is trypsin resitant, the observation that uncomplexed rabbit IgG oes not bind to the trypsin-resistant receptor, whereas the same IgG bound to its antigen does, suggests that conformational changes induced by the binding of ligand may be of consequence in macrophage function.


1981 ◽  
Vol 153 (3) ◽  
pp. 514-519 ◽  
Author(s):  
B Diamond ◽  
D E Yelton

Monoclonal antibodies to sheep erythrocytes (SRBC) have proved useful in identifying two Fc receptors on mouse macrophages, one for IgG2a, and one for IgG1 and IgG2b. We have used monoclonal IgG3 anti-SRBC to identify a third Fc receptor on mouse macrophages which binds IgG3 uniquely. This receptor is present on primary resident and thioglycolate-induced peritoneal macrophages and on some macrophage cell lines. The binding of IgG3-coated SRBC is inhibited by aggregated byt not monomeric IgG3, and not by IgG1, IgG2a, and IgG2b aggregates. It is unaffected by treating the macrophages with trypsin or cytochalasin B and occurs at both 4 degrees and 37 degrees C. IgG3, like all other IgG subclasses, mediates phagocytosis. We have also generated a variant macrophage line which bears the receptors for IgG1 and IgG2b and for IgG2a, but not for IgG3.


1990 ◽  
Vol 172 (6) ◽  
pp. 1853-1856 ◽  
Author(s):  
S Greenberg ◽  
K Burridge ◽  
S C Silverstein

We have studied the distribution of talin in J774 cells and mouse peritoneal macrophages undergoing Fc receptor-mediated phagocytosis. At early stages of phagocytosis, talin accumulates in the cells' cortical cytoplasm adjacent to the forming phagosome and extends into pseudopods that are encircling the particle. Talin colocalizes with F-actin at these sites. After particle ingestion is completed, F-actin and talin are no longer concentrated adjacent to phagosomes. Thus, talin and F-actin undergo dynamic and coordinate changes in their cytoplasmic location during Fc receptor-mediated phagocytosis.


1988 ◽  
Vol 106 (3) ◽  
pp. 657-666 ◽  
Author(s):  
F Di Virgilio ◽  
B C Meyer ◽  
S Greenberg ◽  
S C Silverstein

Cytosolic free Ca2+ ([Ca2+]i) homeostasis was investigated in mouse peritoneal macrophages and in the macrophage-like cell line J774. [Ca2+]i measurements were performed in both cells in suspension and cells in monolayers loaded with either quin2 or fura-2. Resting [Ca2+]i was 110-140 and 85-120 nM for cell suspensions and monolayers, respectively. There were no significant differences in [Ca2+]i between the two macrophage populations whether quin2 or fura-2 were used as Ca2+ indicators. Addition of heat-aggregated IgG, IgG-coated erythrocyte ghosts, or a rat monoclonal antibody (2.4G2) directed against mouse Fc receptor II induced a rise in [Ca2+]i. This [Ca2+]i increase was consistently observed in J774 and peritoneal macrophage suspensions and in J774 macrophage monolayers; in contrast it was observed inconsistently in peritoneal macrophages in monolayer cultures. The increase in [Ca2+]i induced by ligation of Fc receptors was inhibited totally in macrophages in suspension and by 80% in macrophages in monolayers by a short preincubation of macrophages with PMA; however, phagocytosis itself was unaffected. The effect of reducing cytosolic Ca2+ to very low concentrations on Fc receptor-mediated phagocytosis was also investigated. By incubating macrophages with high concentrations of quin2/AM in the absence of extracellular Ca2+, or by loading EGTA into the cytoplasm, the [Ca2+]i was buffered and clamped to 1-10 nM. Despite this, the phagocytosis of IgG-coated erythrocytes proceeded normally. These observations confirm the report of Young et al. (Young, J. D., S. S. Ko, and Z. A. Cohn. 1984. Proc. Natl. Acad. Sci. USA. 81:5430-5434) that ligation of Fc receptors causes Ca2+ mobilization in macrophages. However, these results confirm and extend the findings of McNeil et al. (McNeil, P. L., J. A. Swanson, S. D. Wright, S. C. Silverstein, and D. L. Taylor. 1986. J. Cell Biol. 102:1586-1592) that a rise in [Ca2+]i is not required for Fc receptor-mediated phagocytosis; and they provide direct evidence that Fc receptor-mediated phagocytosis occurs normally even at exceedingly low [Ca2+]i.


1983 ◽  
Vol 96 (3) ◽  
pp. 887-895 ◽  
Author(s):  
I S Mellman ◽  
H Plutner ◽  
R M Steinman ◽  
J C Unkeless ◽  
Z A Cohn

Macrophage receptors for the Fc domain of immunoglobulin G (IgG) can mediate the efficient binding and phagocytosis of IgG-coated particles. After internalization, phagocytic vacuoles fuse with lysosomes, initiating the degradation of their contents. Using specific monoclonal and polyclonal antireceptor antibodies, we have now analyzed the internalization and fate of Fc receptors during the uptake of IgG-coated erythrocytes and erythrocyte ghosts by mouse peritoneal macrophages. Receptor-mediated phagocytosis led to the selective and largely irreversible removal of Fc receptors (greater than 50%) from the macrophage plasma membrane. The expression of several other plasma membrane proteins (including a receptor for complement), recognized by a series of antimacrophage monoclonal antibodies, was affected only slightly. Interiorized Fc receptors were rapidly and selectively degraded. This was demonstrated by a series of turnover studies in which Fc receptor was immunoprecipitated from lysates of 125I-labeled macrophages. These experiments were made possible by the development of a polyclonal rabbit antiserum, raised against isolated Fc receptor, which recognized the receptor even in the presence of bound ligand. In control cells, the receptor turned over with a t1/2 of approximately 10 h; after phagocytosis, greater than 50% of the receptors were degraded with a t1/2 of less than 2 h. The turnover of other unrelated plasma membrane proteins was unaffected (t1/2 of 18-23 h) under these conditions.


1981 ◽  
Vol 193 (2) ◽  
pp. 589-605 ◽  
Author(s):  
M J Banda ◽  
Z Werb

Macrophage elastase was purified from tissue-culture medium conditioned by inflammatory mouse peritoneal macrophages. Characterized as a secreted neutral metalloproteinase, this enzyme was shown to be catalytically and immunochemically distinct from the mouse pancreatic and mouse granulocyte elastases, both of which are serine proteinases. Inhibition profiles, production of nascent N-terminal leucine residues and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis of degraded elastin indicated that macrophage elastase is an endopeptidase, with properties of a metalloproteinase, rather than a serine proteinase. Macrophage elastase was inhibited by alpha 2-macroglobulin, but not by alpha 1-proteinase inhibitor. Macrophage elastase was resolved into three chromatographically distinct forms. The predominant form had mol.wt. 22 000 and was purified 4100-fold. Purification of biosynthetically radiolabelled elastase indicated that this form represented less than 0.5% of the secreted protein of macrophages. Approx. 800% of the starting activity was recovered after purification. Evidence was obtained for an excess of an endogenous inhibitor masking more than 80% of the secreted activity.


1989 ◽  
Vol 94 (1) ◽  
pp. 143-153
Author(s):  
A. Toyohara ◽  
K. Inaba

Mouse macrophages were elicited by the peritoneal injection of chondroitin sulfate solution, harvested and purified, and used as experimental materials. Small and large (diameter: 0.9 microns and 3.0 microns, respectively) polystyrene beads (PB) were used as ingested particles. When the macrophages were incubated with Hank's solution containing small or large PB for 30 min, the phagosomes containing small or large PB were usually randomly distributed. When the macrophages were further incubated for 45 min in PB-free medium, both small and large phagosomes containing PB accumulated at the perinuclear region. The transport of large phagosomes containing 3.0 microns PB was inhibited by cytochalasin B, but not by vinblastine or podophyllotoxin. Conversely, the transport of small phagosomes containing 0.9 microns PB was not inhibited by cytochalasin B but was inhibited by vinblastine or podophyllotoxin. Immunofluorescence microscopy showed that the small phagosomes appeared to accumulate at the central region of the microtubule network. The large phagosomes, on the other hand, appeared to be surrounded by actin-rich cytoplasm, and in some cells actin filament-like structures could be seen around large phagosomes. These results suggest that there are two different transport systems of phagosomes in macrophages. Phagosomes smaller than 0.9 microns in diameter are, probably, mainly transported to the perinuclear region by a microtubule-based motility system and those larger than 3.0 microns in diameter by an actin-based mechanism. It was observed electron-microscopically that accumulated phagosomes containing PB could fuse with each other and form larger phagosomes.


Sign in / Sign up

Export Citation Format

Share Document